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Metabonomics and metabolomics represent one of the three
major platforms in systems biology. To perform metabolomics it
is necessary to generate comprehensive ‘‘global’’ metabolite
profiles from complex samples, for example, biological fluids or
tissue extracts. Analytical technologies based on mass spectro-
metry (MS), and in particular on liquid chromatography–MS
(LC–MS), have become a major tool providing a significant
source of global metabolite profiling data. In the present review
we describe and compare the utility of the different analytical
strategies and technologies used for MS-based metabolomics
with a particular focus on LC–MS. Both the advantages
offered by the technology and also the challenges and limitations
that need to be addressed for the successful application of LC–
MS in metabolite analysis are described. Data treatment and
approaches resulting in the detection and identification of
biomarkers are considered. Special emphasis is given to
validation issues, instrument stability, and QA/quality control
(QC) procedures. # 2011 Wiley Periodicals, Inc., Mass Spec
Rev 30:884–906, 2011
Keywords: global metabolite profiling; metabonomics; metab-
olomics; mass spectroscopic analysis; separations; hyphen-
ation

I. INTRODUCTION

A. Metabolomics and Metabonomics in
Systems Biology

Metabonomics is defined as the ‘‘the quantitative measurement
of the dynamic multiparametric response of a living system to
pathophysiological stimuli or genetic modification’’ (Nicholson,
Lindon,&Holmes, 1999;Nicholson et al., 2002).Metabolomics,
on the other hand, has a number of definitions ranging from the
‘‘systematic study of the unique chemical fingerprints that
specific cellular processes leave behind’’ to ‘‘the total biochem-
ical complement of a cell or particular organ.’’ Metabolomics
specifically studies small-molecule metabolite profiles (Fiehn,

2002; Daviss, 2005). However, as the field of global metabolite
profiling has developed the distinction has become blurred and
the use of the terms has tended to become one of personal
preference (for a recent discussion, see Lindon & Nicholson,
2008). Irrespective of the term used both approaches apply
holistic analytical strategies to collect untargeted analytical data
to investigate the patterns and concentrations of low molecular
weight organicmetabolites in biofluids, cells, or organswithin an
organism and in the present article both terms will be used.
Metabolite profiling is the third ‘‘omic’’ (the other two being
genomics and proteomics), an integral and very important part of
the systems biology field (see Fig. 1). There is therefore a
requirement that the analytical methodologies used produce
comprehensive and representative global metabolite profiles
from such complex biological samples. As we have noted
previously the ultimate metabolite profiling platform for such
analyses would provide analysis directly on the samples, without
sample preparation or storage, and would provide unbiased
results (with respect to different classes of metabolites), rapidly
and, at the same time, would also be highly (and equally)
sensitive to all the metabolites present in the sample, with a
wide dynamic range, and be robust and reproducible (Lenz &
Wilson, 2007). These desirable features should also be combined
with high information content, which in return would enable
straightforward identification of key metabolites. Unfortunately
there is no technique currently available that can provide all of
the desired properties. Not surprisingly the consensus reached
in related scientific meetings, and the common practice of active
researchers in the field, is to try to employ multiple analytical
platforms, to maximize metabolite coverage of the sample set
(see, e.g., Lenz et al., 2004a,b and Wishart’s articles and work
on the Human Metabolome Project: Wishart et al., 2007, 2008).
1H NMR spectroscopy, liquid chromatography–MS (LC–MS),
and gas chromatography–mass spectrometry (GC–MS) are
currently the major analytical tools in this effort. These topics
have been described in detail in a variety of reviews many of
which are referenced below (Villas-Boas et al., 2005; Wilson
et al., 2005b; Dettmer, Aronov, & Hammock, 2007; Lenz &
Wilson, 2007; Lu et al., 2008b; Theodoridis, Gika, & Wilson,
2008;Wu et al., 2009) and have also recently been the subject of a
number of books (Robertson et al., 2005; Griffiths, 2007; Lindon,
Nicholson, & Holmes, 2007).
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Nuclear magnetic resonance (NMR) spectroscopy represents a
powerful technique for metabolite profiling and offers direct
identification and quantification of a range of abundant analytes.
Typically each research group creates their own library of spectra
of compounds (although there is a commercial library of ca. 500
compoundswith spectra acquired at sevendifferent pHvalues).A
potential limitation in applying NMR spectroscopy in metabolic
profiling is the requirement for a specialist operator for the
instrument. In addition, the initial acquisition cost of the
spectrometer is high (although subsequent costs per sample are
low). As a result the number of NMR facilities available for
this type of work is limited. Despite this NMR spectroscopy
is currently the most used technology in metabolomics and
metabonomics (Wilson, Wade, & Nicholson, 1989; Lenz &
Wilson, 2007; Coen et al., 2008).

Gas chromatography–mass spectrometry (GC–MS) is, after
NMR and LC–MS, the third pole in the holistic metabolite
analysis arena. GC–MS provides a powerful tool with strengths
resulting from its sensitivity andmetabolite identification potential
and weaknesses in its poor ability to analyze large and/or, non-
volatile molecules without prior derivatization coupled with the
need for extensive, and labor-intensive, sample preparation
(Fiehn et al., 2000; Kanani, Chrysanthopoulos, & Klapa, 2008;
Strehmel et al., 2008). However, because the majority of the
metabolites encountered in biological samples are involatile and,
due to the need to obtain the maximum possible coverage of the
metabolome, profiling by LC–MS has become a basic part of the
analytical toolkit in metabolomic and metabonomic research
(Theodoridis, Gika, & Wilson, 2008). Since the first reports of

LC–MS-based metabonomics in 2002 (Plumb et al., 2002,
2003a,b) the use of this technology in the field has expanded
continuously. There are good reasons to justify this:

1. The large number of available instruments and trained
experimental scientists to perform analysis.

2. The wide analyte coverage obtained, giving a more
‘‘global’’ profile. Thus, as a rule LC–MS is much more
sensitive than NMR (although this is analyte dependent
and there are metabolites such as, e.g., glucose that,
because of their poor ionization properties, are much more
easily detected by NMR spectroscopy). LC–MS can also
analyze both semi-volatiles and non-volatiles in the same
run in contrast to GC–MS.

3. The strong interest of both the manufacturers (who have
invested in the technology) and the life sciences research
community (who are already familiar with the technology
for drug bioanalysis, therapeutic drug monitoring, and
proteomics).

4. The versatility of the technology, where the same instru-
ment platform can function for bioanalytical work for, for
example, therapeutic drug monitoring or environmental
analysis or proteomic analysis and with minimal, or no,
change can switch to metabolite profiling (targeted and
non-targeted).

Here we describe the current state of the art for generating
global metabolite profiles, based on the use of MS techniques,
with particular emphasis on LC–MS, whilst providing a

FIGURE 1. A schematic of the systems biology field.
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commentary on the relative strengths and weaknesses of the
individual technologies and strategies for their use. Key issues
addressed are the validation of the method, quality control (QC)
approaches to evaluate system stability and general performance,
ways to perform data extraction with the generated multidimen-
sional data, and methods for the identification of markers found.

II. MASS SPECTROMETRIC TECHNIQUES FOR
‘‘HOLISTIC’’ ANALYSIS

Typically two strategies can be followed inMS-based metabolite
profiling analysis. With the first strategy a limited number
of known/or unknown metabolites or compound classes are
measured. This is often called ‘‘targeted’’ metabolomics, where
the peaks are first designated/annotated to metabolites (either
identified metabolites or non-identified/non-fully structure
elucidated metabolites known to be present in the samples),
and subsequent multivariate statistical analysis uses only this
‘‘thinned’’ data set.

The second strategy promotes an unbiased holistic approach
towards the profiling of as many features as possible in the
metabolome without prior knowledge of the identity of these
features. Multivariate statistical analysis then deals with a much
bulkier data set than the targeted approach, and the data guides
the analyst to recognize the important metabolites that contribute
to the differentiation (if any) of the samples. Next effort is put
towards the identification of these discriminating molecules
(peak annotation or structure elucidation). The following
sections describe in more detail the various instrumental
configurations used for the development/application of MS-
basedmetabolite profiling research. includingDI/FIA–MS,LC–
MS, GC–MS, and capillary electrophoresis (CE)–MS.

A. Flow Injection (FI) or Direct Infusion
(DI) Analysis-MS

The direct infusion (DI) or flow injection (FI) analysis of
biological samples (fluids or tissue extracts) is of interest because
of its potential to provide high-throughput profiling. Such an
approach could be ideal for application in population studies for
mapping the large numbers of biological specimens that are
generated. The method so far has utilized very high-resolution
mass spectrometers (FT-ICR) and has been mainly used for
plant and microbial samples in metabolomic studies. Such
fingerprinting generates data on large numbers of masses and
these data sets exhibit high variance, thus providing a challenge
for data mining. The Drapper group (Aberystwyth University,
UK) advocates the utilization of DI or FIA–MS as a ‘‘first pass’’
screen in the search for compositional differences. To achieve
unbiased discrimination between sample groups, powerful data
analysis algorithms are used along with FIA–MS/MSn meta-
bolite databases. Three relevant protocols have been reported so
far, also expanding to biofluids. Although these are designed
for use by biologists/analytical chemists, collaboration with
data-mining experts is generally advised by the developers
(Beckmann et al., 2008; Enot et al., 2008; Overy et al., 2008).

As a whole DI/FIA–MS provides an interesting approach
because if LC is not used the variations that this analytical
dimension brings are eliminated. However, the application of DI/
FIA–MS to complex and highly variable samples such as urine
and plasma/serumwhere matrix effects andmore specifically ion

suppression/ion enhancement, and differences in salt concen-
trations, etc., have the potential to adversely affect the result
needs further investigation to prove the validity of the approach.
The technique also has obvious limitations in the necessity
for high-resolution MS instruments and also in the analysis of
isobaric substances.

B. GC–MS

Gas chromatography–mass spectrometry (GC–MS) technology,
and applications in analytical chemistry, were developed long
before the introduction of LC–MS, and GC–MS remains the
platform of choice for the analysis of volatile and semi-volatile
analytes. A major advantage for the application of GC–MS in
metabolomics and metabonomics is the availability of GC–MS
electron impact (EI) spectral libraries. These libraries offer very
good possibilities for the identification of unknown biomarkers.
In fact the typical process in GC–MS-based metabonomics is
first to identify the peaks in the chromatogram, quantify them and
then find differences in their concentrations or find trends for
these analytes in the sample sets.

Major limitations of the technology are found in the analysis
of polar, non-volatile analytes (in the absence of prior
derivatization), large molecules and thermolabile compounds.
Hence GC–MS cannot provide a global metabolite profile but
only a profile of apolar, volatile to semi-volatile molecules (or
those that can be made volatile) with MW lower than 600–
700 amu. As indicated above, another obstacle is the need for
extensive sample preparation to make involatile substances
suitable for GC: typically a dual derivatization scheme is applied
to samples prior to analysis. First methoxymation is applied to
cover the carbonyl groups and next silylation to mask active
hydrogen atoms (OH, or amino groups) (for details, see Kanani,
Chrysanthopoulos, & Klapa, 2008; Pasikanti, Ho, & Chan,
2008). Kanani, Chrysanthopoulos, and Klapa (2008) report that
the length of the derivatization step is critical as it is imperative
that all metabolites are derivatized, otherwise there is a risk of
accepting differences due to derivatization kinetics as variations
of biological significance. Derivatization, extensive sample
preparation, and long chromatographic analysis time make
GC–MS a rather low-throughput technique for metabolomic/
metabonomic applications.

However, a current advantage of GC–MS in this field is that
the identification of peaks (peak annotation or, more difficult, the
structure elucidation of unknowns) is more straightforward than
in LC–MS but is by no means a trivial exercise. This process is
often assisted by (1) using retention time or retention index
comparison with the values of pure standard compounds and (2)
using retention indices of mass spectral library databases. The
retention index of a metabolite is calculated by relating
the retention time of the compound to retention times of standard
n-alkanes or other standards (e.g., fatty acid methyl esters
(FAMES)) analyzed with the same conditions. Certain analytical
software platforms calculate these automatically. In contrast to
ESI or APCI LC–MS chromatograms, a GC–MS chromatogram
for metabolomics studies does not usually contain molecular ion
peaks (due to fragmentation in the EI ion source). A fact that
makes peak annotation/identification even more complex is that
analytes may appear in several multiderivatized forms. This
means that, for example, alanine may be present in the sample
either as a molecule with one or two TMS moieties, or a mixture
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of both forms. Kanani, Chrysanthopoulos, and Klapa (2008)
reported that even after up to 30 hr of silylation time the
derivatization of many metabolites is not expected to have been
completed and suggest special attention with regard to applying
the appropriate derivatization time to avoid biases in GC–MS-
based metabolomics. Even worse, all these molecules will
undergo extensive fragmentation to several ions in the ion source.
Typically only one of these signals can be used for the
quantification of the analyte. Alternatively deconvolution of
these signals to one peak is performedmanually or automatically
using special software such as Automated Mass Spectral
Deconvolution and Identification System (AMDIS; National
Institute of Standards and Technology (NIST), USA). These
software can perform spectral deconvolution and library
searching against the NIST database. AMDIS has been applied
inmetabolic profilingwith success (Halket et al., 1999); however,
automatic deconvolution should be used with caution and should
always be followed by manual inspection of the results. A recent
review covering the field of GC–MS library searching for
compound identification has been produced (Halket et al., 2005).
Peak-picking and alignment algorithms used in LC–MS have
also found use in GC–MS analysis. Lin et al. (2009) used the
XCMS program to detect, normalize, and align features from
GC–MS data from the analysis of urine from a Crohn’s disease
model. A problem encountered in this approach is the multitude
of signals per metabolite and the artifacts originating from
the derivatizing agents. The authors analyzed blank samples and
subtracted these from the test runs before normalization of the
signals (in R software). Markers of interest detected by this
approachwere next identified by searching inmass libraries. This
approach takes the reverse route for data handling compared to
the one described above for GC–MSmetabolomics experiments.
As a result the rigorous process of identifying all peaks in the
sample before the application of advanced informatics is
circumvented and data processing should proceed faster: of the
2,990 features detected in XCMS, 546 were removed as artifacts
reducing the number to 2,444. These were then divided into 592
groups based on the finding that the features were sharing the
same retention time, thus giving a rough estimate of the number
of metabolites detected. Finally, 23 features of interest were
found (P< 0.05, ANOVA) of which 13 were identified, 8 were
unknowns, and 2 corresponded to different derivatives of
identified metabolites. Further studies in the application of
metabolomics software in GC–MS are needed to evaluate the
utility of this approach.

Despite these disadvantages GC–MS is the method of
choice for the analysis of a large number of analyte groups that
share the necessary characteristics described above. For example,
GC–MS is still unchallenged in the analysis of organic acids in
urine in the search for (inborn and other forms of) metabolic
syndromes (although Bruker has recently produced an NMR
platform for this). In these aspects, it cannot still be surpassed by
LC–MS or other MS-based analytical platforms as it offers
excellent sensitivity, wide dynamic range and quantification,
very good identification capabilities, directly searchable data-
bases, very satisfactory robustness, and even possibilities for
platform comparison using retention time indices (for a review of
the use of GC–MS in metabolome analysis to study mutations of
inborn errors of metabolism, see Kuhara, 2005). The combina-
tion of these features renders GC–MS a very powerful analytical
tool for metabolite profiling.

Mass analyzers used in GC–MS metabolomics include
single quadrupoles, ion traps, and TOF-MS machines. Combi-
nation with TOF instruments is the first choice (see discussion
below in LC–MS), but if this is not available quadrupoles and
ion-traps will also suffice. Recently, developments in compre-
hensive two-dimensional GC (GC�GC) coupled to time-of-
flight mass spectrometry (TOF-MS) offer additional perspective
to the application of the technology (see Shellie et al., 2005;
Welthagen et al., 2005;Almstetter et al., 2009).Analysis time can
be reduced and at the same time a larger number of metabolites
can be detected in a single analysis (due to the increased peak
capacity). In GC�GC components that elute from the first
column are subsequently introduced to a second column. The first
column is usually non-selective, whereas the second column,
which is much shorter, separates compounds on an orthogonal
mechanism (e.g., if the first separation is based on molecular
weight, or boiling point the second separation is based on
polarity). The technology renders it a powerful tool for the
analysis of complex mixtures but requires expensive instrumen-
tation for which robustness is not a strong point. Data
interpretation and manipulation is not straightforward since the
outcome of such instruments is not a typical mass chromatogram
but resembles a heat map. A recent article deals with the
comparative evaluation of software for the deconvolution of
metabolomics GC–TOF-MS data (Lu et al., 2008a).

C. Capillary Electrophoresis-Mass Spectrometry

As a technology CE can provide interesting advantages in terms
of (1) high resolution, (2) the ability to analyze a diverse range
of chemical compounds, and (3) need for low sample volume.
Furthermore, CE, is well suited to the types of samples
encountered in metabolic profiling, requires minimal sample
preparation (e.g., for urine samples), and has good potential for
the analysis of charged or polar molecules (which can represent
troublesome molecules for both GC and LC). However, the fact
is that, so far, CE has not found widespread application in
global metabolite profiling.Major reasons for this are issues with
analytical system stability, mainly having to do with the
modification of the capillary wall due to sorption of macro-
molecules following injection of biological samples. As a result
reproducibility of migration times and peak areas of the analytes
is poor (Ullsten et al., 2006). In targeted analyses (e.g.,
pharmaceutical analysis) these issues are easily overcome with
the introduction of internal standard(s). This is not feasible in
non-targeted analysis where peak alignment and quantification
would instantly fail. Hence, there have been efforts towards these
ends via the development of coated capillaries (Ullsten et al.,
2006; Ramautar et al., 2008).

Capillary electrophoresis (CE)-UV and CE–MS studies
have been reported mostly in the area of bacterial metabolomics
in particular studies onBacillus subtilis (Soga et al., 2003; Jia and
Terabe, 2005), but there are also works on plant metabolomics
(Sato et al., 2004; Levandi et al., 2008). A recent review
covers the field of CE–MS application in bacterial extracts, plant
extracts, urine, plasma, and CSF metabolomics (Ramautar,
Somsen, & deJong, 2008). Microchip CE and microfluidics
application (including micro-LC) have also been applied in
metabolomics, and the field was recently reviewed by Kraly
et al. (2009). The majority of the reports deal with targeted
analysis of bacterial or plant metabolomes in photometric or
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electrochemical detection. CE–MS has as well been usedmostly
in targeted metabolite analysis rather than non-targeted analysis.
In an application of CE–TOF-MS (using a fused silica capillary),
Soga et al. (2006) identified ophthalmic acid as an oxidative
stress biomarker (in liver extracts) associated with the oral
administration of acetaminophen (paracetamol, 150mg/kg) to
mice using a metabolomics approach. Recently, CE–ESI-MS
was applied for the study of single cell metabolomics and
subcellular structures (Lapainis, Rubakhin, & Sweedler, 2009).
However, a larger number of applications of CE–MS are still
required for it to be considered an alternativemetabolite profiling
platform.

D. LC–MS, the Tool for Global Metabolite Profiling

Generally metabonomics analyses by LC–MS are performed
using solvent gradients, on reversed-phase (RP) packing
materials. Columns of between 2.0 and 4.6mm i.d. and
5–25 cm length are typically used containing 3–5 mm packing
materials (Theodoridis, Gika, & Wilson, 2008), although lately
the trend is towards sub-2 mm particles (ultra performance
LC (UPLC) or ultra high-performance LC (UHPLC) columns).
U/HPLC–MS is increasingly used as it provides much higher
separation power and peak capacity (Wilson et al., 2005a; Lenz&
Wilson, 2007). In fact it can now be claimed that ca. 20% of
UPLC applications deal with metabolomics/metabonomics
applications. Validation of UPLC–TOF-MS for the metabo-
nomic analysis of human urine has been reported (Gika et al.,
2008b) and more recently for blood serum (Zelena et al., 2009)
and plasma (Michopoulos et al., 2009).

Analysis times for LC andU/HPLC-MSmetabolite profiling
studies have ranged from ca. 2min up to 1 or 2 hr per sample
depending upon the application. Such gradient RP separations
arewell suited for the analysis of compounds of medium and low
polarity (which represent a huge number of metabolites);
however, they are less suited for the analysis of polar or ionic
compounds which elute essentially unretained. Such analytes
include important biomolecules such as some amino acids and
sugars. A solution to this could be to resort to CE–MS or GC–
MS. Another solution is to use hydrophilic interaction chroma-
tography (HILIC), which works essentially as a type of reversed-
RP chromatography. HILIC phases are now available from
several manufacturers, also in sub-2 mm particles. In HILIC the
chromatogram is virtually turned around: thus, the late elutants in
RP-LC elute first and the early elutants in RP elute late
(metabonomics/metabolomics applications of HILIC–MS
include Idborg et al., 2005; Cubbon et al., 2007; Tolstikov,
Fiehn, & Tanaka, 2007; Gika, Theodoridis, & Wilson, 2008a).

Another alternative separation mechanism in liquid phase is
the application of water-rich (or even water only) mobile phases
in combination with high operating temperatures. In one
example, Plumb et al. (2006) used a temperature of 908C for
gradient elution in UPLC for the analysis of urine. Others have
used even higher temperatures for separations (in excess of
1008C and up to 1808C in some applications) and temperature
gradients (Gika et al., 2008a). This system worked very well for
the metabonomic analysis of urine, but not as well for blood
plasma, where the eluotropic strength of even superheated water
did not suffice to elute apolar sample components.

As stated earlier, in non-targeted metabonomic LC–MS
analysis, the aim is for an unbiased analysis where the data will

drive and guide the bioinformatics analysis. In such a case, UPLC
proves superior to LC due to (1) the higher stability of
the chromatographic system and hence, (2) the enhanced
repeatability, (3) the higher separation power (UPLC should
provide more features compared to HPLC), and (4) the higher
throughput. A typical UPLC peak width is close to 3–5 sec at the
base and hence UPLC must be combined with fast acquisition/
‘‘scanning’’ mass spectrometers; therefore, the combination of
UPLC with TOF or qTOF machines is very common for such
applications.

Often in metabolomics the analysis of the samples requires
the mass spectrometer to acquire data in both þve and �ve ESI
modes tomaximizemetabolome coverage by ionizingmolecules
of different classes that ionize more efficiently in positive mode
(e.g., nitrogen containing molecules) or in negative mode (e.g.,
acids). Currently, the utilization of ion sources, capable of fast
switching between ionization modes over the lifetime of the
eluting chromatographic peak, is not common. This is due to the
loss in sensitivity that is incurred as a result of the switching
process and also because polarity switching in older TOF
machines cannot be performed ‘‘on the fly.’’ In such cases the
whole sample set in analyzed inþve ESI and again in�ve ESI in
a second run. Newer TOF machines, or triple quadrupoles, can
provide automatic polarity switching hence reducing analysis
time (but with the sacrifice of some sensitivity).

A typical UPLC-QTOF total ion current (TIC) trace for a
human plasma sample (�ve ESI) along with its corresponding
contour plot is shown in Figure 2A. Figure 2B shows the profile of
rat urine, also obtained using UPLC-QTOF (þve ESI). There are
many ions present in these TICs, thus advanced tools are needed
to study data sets comprising tens to hundreds of such samples.
As described below, via the use of a variety of multivariate
statistical approaches (e.g., principal components analysis
(PCA)) the discovery of differences in the metabolic profiles
becomes both possible and practical. It is clear however that urine
contains more polar constituents, whereas serum contains apolar
compounds of higher molecular weight.

An objective and pragmatic problem is that no matter how
good the LC separation is before the introduction of metabolites
into the MS, and no matter how sensitive and accurate the
detection in MS, it is still likely that an unknown number of
sample components will still remain undetected. This unwanted
effect is the cumulative result of a number of issues such as the
varying polarities of the analytes (leading to non-retention or
non-elution under the LC conditions used), poor ionization
properties, wide range of molecular mass of the metabolites, low
concentrations, and ion suppression by other components present
in the sample. Therefore, although themetabolome coverage that
LC–MS offers is perhaps the most comprehensive provided by
any of the current metabolite profiling technologies it is still not
complete. Ion suppression is a well-known problem in MS that
can be described as a matrix effect phenomenon resulting from
the coelution of matrix components that will affect the detection
capability, precision, or accuracy for the analyte(s) of interest.
In the case of ion suppression a loss of signal intensity is
observed. If the opposite happens (the signal increases) the term
ion enhancement is used. Again, in targeted analyses where a
number of internal standards (usually stable isotope labeled
analogues of the analyte) can be used, these issues can be
controlled (i.e., ion suppression may still occur but it is
monitored). In untargeted analysis the utilization of tens or even
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hundreds of deuterated internal standards may correct only for
the corresponding non-deuterated analytes and hence cannot
provide a practical and easy solution to the problem. Hence high-
quality and very stable chromatographic separations are essential
if reliable data are to be produced.

E. Mass Spectrometry Platforms

In addition to the obvious role of the chromatographic separation
the ionization mechanism employed in LC–MS plays a
major role in the profile measured. So, just as with the LC
separation it is also the case with respect to MS that it is not
prudent to take for granted that one methodology can cover all
types of molecules: polar, neutral, ionic, non-polar, and so forth.
Obviously, some analytes are ionized more efficiently in one
ionization mode or one polarity and some in another mode.
Currently, ESI is by far the method of choice in LC–MS
metabolomic studies because it produces large numbers of ions
via charge exchange in solution (Sana, Waddell, & Fischer,
2008). Atmospheric pressure ionization chemical ionization
(APCI) on the other hand has been used in only a few cases. The
APCI technique produces ions by charge exchange in the gas
phase and may provide wider dynamic range (Want, Cravatt, &

Siuzdak, 2005), much lower signal intensities, background
noise and in-source fragmentation than ESI as shown in a study
of the plant metabolome using FT-ICR-MS (Aharoni et al.,
2002). Typically, an APCI full scan TIC will be much less
populated and of much lower total signal that the respective
ESI TIC. A dual ionization metabolomics approach has
recently been described increasing the coverage of the metab-
olome of human serum (Nordstrom et al., 2008). In another
study a group from Agilent Technologies (Sana, Waddell, &
Fischer, 2008) found that employing APCI in addition to ESI
resulted in a 34% increase in the coverage (number of features
detected) of themetabolome of human erythrocytes. Such effects
are illustrated in Figure 3 (Sana, Waddell, & Fischer, 2008),
which provides an interesting perspective on the differences
between the ionization modes. It is well known that two
mechanisms of ionization have some ion formation overlap (as
also with APPI). Figure 3 shows that the contribution of APCI
especially in positivemode is significant and can be considered as
a complementary technique.

Our findings concur with the above (Fig. 4). This result is
from the LC–MS analysis (QTRAP 4000) of blood plasma from
statin-dosed and control rats. It can be seen that certain ions are
only seen in ESI (Fig. 4A) and some ions appear only in APCI

FIGURE 2. TIC and contour plot from human serum analysis in UPLC-QTOF (�ve ESI) (A) and from rat

urine UPLC-QTOF (þve ESI) (B). The figure shows that compared to urine, serum contains more apolar

components that elute late in the chromatogram. In urine a big portion of the peaks and the overall signal is

collected in the first part of the mass chromatogram thus corresponding to polar/medium polar analytes.

Conditions: UPLC–QTOF-MS analysis of 10 mL of serum (following protein crash); voltages: capillary

3,000Vin (A) and 3,500 kVin (B); sample cone: 35V; desolvation temperature: 3008C; source temperature:

1208C. LC on acquity HLB columns with gradient elution at 0.4mL/min. For human serum solvent A is

water and solvent B ismethanol: Program: 100%A at time 0 and then linear change to 100%Bat 16min and

isocratic 100%B for 4min. For rat urine solvent A is water and solvent B is acetonitrile (both acidified with

formic acid 1%, v:v). Program: 95%A at time 0 and then linear change to 80%A at 5min, then to 55%A at

8min and 5% A at 9.8min and then isocratic 5% A for 2min.
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(Fig. 4B). Clearly the combination of both data sets results in a
more comprehensive coverage of the metabolome.

Lately interest in newly developments in the ionization
technologies such as desorption electrospray ionization (DESI)
or extractive electrospray ionization (EESI) and direct analysis

real time (DART) has lead to their application in holistic
metabolite profiling applications. We used DART for the MS
analysis of urine and detected a much smaller number of ions
compared to LC–MS runs (data not shown). Zhou, McDonald,
and Fernández (2009) reported the application of DART for the
TOF-MS profiling of serum applying a dual analysis scheme:
non-derivatized serum and next derivatized serum (silylation
with MSTFA and TMCS). Although the authors claim sample
throughput asmajor advantage ofDARTusageversus LC–MSor
GC–MS, the need for sample derivatization significantly
compromises this, whereas at the same time matrix effects
remain, in our opinion, an issue. The group of G. Cooks have
reported on the use of DESI and EESI on targeted metabolomics
studies on Escherichia coli (Jackson et al., 2008); however, the
focus was on a very small number of metabolites: the presence of
13 out of 17 selected central carbonmetabolites was confirmed in
real samples, thus hardly justifying the term metabolomics.
Obviously, further evidence is necessary to substantiate the
potential of such technologies in holistic metabolite profiling.

Liquid chromatography–mass spectrometry (LC–MS)-
based metabolomics analysis is usually performed using high
mass accuracy instruments to gain from the higher mass
resolution and to assist in marker identification. The platform
that is currently emerging as the combination of choice is a
UHPLC type of separation combinedwith aTOF-MS instrument.
This combination benefits from the high separation power of the
UHPLC and the increased peak capacity on the chromatography
side and the fast acquisition and high resolution of the TOF-MS.
Metabolomics analysis using triple quadrupole instruments is
not common, especially in full scan mode in non-targeted
analysis, due to the high background noise (there are however,
good examples of the use of triple quadrupole instruments, see
Bijlsma et al., 2006; Ceglarek et al., 2009). Other instruments
such as linear ion traps and the high-endMSmachines such as FT-
MS and Orbitrap have also found use. From the linear ion-trap
systems the configuration of MDS Sciex of a triple quadrupole
where the third quadrupole is replaced by linear ion trap
(QTRAP) is the system that has found wide utilization in
metabolomics studies. QTRAP systems, introduced in 2002
(QTRAP 4000) and 2008 (QTRAP 5500), provide utilities such
as enhanced mass scanning (ion trap scanning in the axial
direction towards the detector resulting in higher sensitivity
compared to the corresponding triple quadrupoles) and several
additional MS andMS–MS functionalities. Fragmentation up to
MSn level is theoretically achievable although in small molecule
analysis this feature is not as useful as in proteome analysis. Ion
traps, however, do not provide high mass accuracy. Ultra high-
resolution MS machines (FT-MS, Orbitrap) provide resolution
higher than 100,000 and superior mass accuracy (sub-ppm)
compared to other types ofmass spectrometer. Figure 5 illustrates
the advantages of this ultra-high resolving power which
facilitates analysis of complex metabolic extracts without mass
spectrum overlap from other species. The figure shows the range
of metabolites of nominal mass 279 amu from the spectrum
obtained from the analysis of hepatocyte extracts. Five ions were
detected in the 279 amu region: one is the common plasticizer 2-
ethylhexylphthalate [MþH]þ at 279.1583 amu. The peak of the
sodium adduct of palmitic acid [MþNa]þ 279.2288 amu
revealed concentration changes related to drug concentration
irrespective of the other neighboring peaks (including that of the
plasticizer which is only 70mDA apart). In this case the high

FIGURE 3. ESI versus APCI, pH 6 versus pH 7 versus pH 9. Venn

diagrams showing the number of overlapping features between different

pH conditions and ionization modes. Comparison of the total number of

detected features for (A) pH 6 and 7 extracted samples, and (B) pH 2, 7,

and 9 extracted samples, by combining the results of ESI (þ), ESI (�),

APCI (þ), and APCI (�) modes. C: Comparison of the total number of

detected features for ESI and APCI modes in both polarities (þ/�),

where the results for each condition: pH 2, 6, 7, and 9 were combined

together in each ionization mode. Reprinted from Sana, Waddell, and

Fischer (2008) with permission from Elsevier.
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mass accuracy facilitated the unambiguous assignment of the
molecular formulae (Brown, Kruppa, & Dasseux, 2005). High
mass accuracy is not dependent on the analyte concentration and
is also achievable overwide concentration ranges. However, high
mass resolution typically requires longer scanning time com-
pared to, for example, TOF instruments, which is not always
suitable for the untargeted analysis of unknown samples. The
original Orbitrap instrument was rather slow in scanning but

newer versions provide faster scanning rates (e.g., ExactiveTM)
and can thus better be combined with UPLC for untargeted
holistic analysis.

Of course the use of so many different types of mass
spectrometer does beg the question of the comparability of the
data obtained on different instruments. MS instruments operate
in very different ways, differing in several operational and
instrumental configuration parameters (e.g., the ionization probe

FIGURE 4. Contribution plots for ions that ionize only in ESI (A) and only in APCI (B). A: Ions 496.4/8.3,
504.6/8.4, and 524.6/9.1 (mass/retention time pairs) appear practically only in ESI mode and not in APCI.

B: 130.1/2.5 and 112.1/0.7 appear practically only in APCI mode and not in ESI.
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design, the ion optics, the operation of themass analyzer, even the
detector and the signal obtained), not to mention the processing
software. As a result it is widely understood that single-MS
spectra are not reproducible on different types of instruments
(Weinmann et al., 2001).

To the best of our knowledge, only limited work has been so
far performed comparing analytical platforms in performing
metabolomics analyses. Pandher et al. (2009) have recently
reported the cross-validation of an Agilent 6510 hybrid quadru-
pole-TOF and a Waters QTOF Premier used for the analysis of
tumor cells. In a study conducted by us a set of 120 urine samples
were analyzed using UPLC–ESI-MS with three different
mass spectrometers: a Waters QTOF Micro, an API/MDS Sciex
QTRAP4000 (triple quadrupole-linear ion trap operating inEMS
mode), and anAPI/MDS Sciex 365 triple quadrupole. The aim of
the study was (1) to compare the profiles obtained from the
analysis of 120 human urine samples on three different mass
spectrometers, (2) to assess the stability of the three systems,
(3) to identify markers separately by each of the three analytical
systems, (4) to compare the markers and the patterns revealed by
the different instrumental set-ups and software tools. The whole
sample set consisted of 120 test samples, 16 QC samples, and 4
reference test mixtures—(in agreement with the sample con-
figuration proposed in Gika et al., 2007) and the analyses lasted
for ca. 36 hr in single uninterrupted runs. RP gradient UPLC was
used and full scan mass spectrometric data were collected (m/z:
80–850) in positive ESI at either 3,500V (Q-Trap), 5,000V (3 Q
365), or 3,000V (Q-TOF). The QC sample was injected in
quadruplicate before the commencement of the analysis of the
unknown samples, to condition the system, and then every
10 injections run to validate the quality of the profiles obtained.
Retention time and intensity variationswere assessed for selected
peaks of the pooled urine control sample. Multivariate statistical
analysis was applied to project the data and extract information.
Principal component analysis (PCA) was performed using
Marker View (for data obtained in the Q-Trap 4000 and
365 instruments) and Marker Lynx (for data obtained in the
Q-TOF). Whilst the TICs obtained on Q-TOF, Q-Trap, and 3-Q
instruments for the same samples appeared very different, the
PCA results however (Fig. 6 showing PC1 vs. PC2 scores plot in
the three MS machines) were strikingly similar. This similarity

was despite the fact that: (1) the instruments were made by two
different manufacturers, (2) the mass analyzers operated under
different principles, and (3) twodifferent data extraction software
were used. Comparing the three scores plots it can be seen that
the QCs lie closely clustered, in the center of the scores plot,
indicating a repeatable method and a trustworthy data set. All
three MS systems identified the same samples as ‘‘different from
the herd,’’ and the same ionswere identified in all three systems as
being responsible for this separation. Robustness of the results
was evaluated by applying different PCA scaling methods
(pareto, centered, and UV) in SIMCA P and was found very
satisfactory (plots were alike in all three data sets).

This finding may be valid for sample sets where great
biological variability is observed: that is, in this case urine
samples from humans. However, for sample sets where the
biological variability is not as great (e.g., blood samples from
inbred, genetically similar, animal models), multivariate statis-
tics do reveal differences between the profiles due to instrumen-
tation differentiation. Thus, in a similar study on rodent plasma
UPLCwas connected simultaneously, via flow splitting to QTOF
and a QTRAP mass spectrometers operating in ESI mode.
Data from both instruments were extracted with the same
algorithm (XCMS) and were further treated in SIMCA P11 and
SIMCA P12. The resulting PCA scores plots again looked very
similar (data not shown), clearly separating the two classes of
animal. Advanced statistical tools such as O2PLS and hierarch-
ical PCA were used to compare findings and evaluate the
complementarity of the two data sets and from this it was seen
that the QTRAP mass spectrometer detected a number of unique
ions (accounting for ca. 10% of the total), whereas the common
ions (picked by both QTOF and QTRAP) account for ca. 80%.
The remainder of the ions (ca. 10%) were essentially due to
‘‘noise’’ that can be ignored. Further statistical work is on
progress on these data sets and will be reported elsewhere (Gika
et al., in preparation).

F. Maximizing Metabolome Coverage
in LC–MS-Based Analysis

Clearly there is a tension between the high sample through-put
required to profile large numbers of samples (in both positive and
negative ionization modes) and obtaining the most comprehen-
sive coverage of the metabolome. Thus, if rapid gradients are
used the sample throughput is maximized, but at the expense of
the number of features detected. Similarly, the use of certain
designs of mass spectrometer results in very accurate mass
determination, of great value for identification purposes, butmay
require chromatographic peak widths that are not consistent
with highly efficient separations. As described above separation
systems capable of delivering high peak capacities, using
microbore separations or U/HPLC-based separations, have been
described, but it is not yet clear what proportion of the
metabolome these cover. Further to this, both the length and
shape of the gradient can affect the number of features detected
and these also need careful optimization to maximize coverage.
In addition, whilst the bulk of the LC–MS work that has been
described for determining global metabolite profiles have used
RP gradient chromatography it is obvious that such separations
are not ideal for highly polar/ionic species. The addition of
HILIC, or ion-exchange LC separations will likely increase
metabolome coverage but does not eliminate the need for the RP

FIGURE 5. Partial FT-ICR-MS spectrum of a hepatocyte cell extract.

The 279m/z nominalmass range is shown: five ions are detected ofwhich

the sodium adduct of palmitic acid (ion of interest) is clearly resolved

from a plasticizer. From Brown, Kruppa, and Dasseux (2005) with

permission from Wiley.
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profile as well. Faced with these opportunities there are
essentially two options. First, the samples can be profiled twice,
using two analyseswithRPandHILICundertaken independently
(Gika, Theodoridis, & Wilson, 2008a). This option is easy to
implement and generates relatively uncomplicated data sets. The
alternative is to attempt some type of two-dimensional analysis as
reported by, for example, Wang et al. (2008) in an ‘‘orthogonal’’
combination of the selectivity of HILIC and RP-LC using a
column switching approach. Two-dimensional chromatography
requires excellent repeatability and suitable software for
subsequent data alignment analysis, if multiple samples are to
be analyzed with confidence. Such methods have been used for
GC analysis (GC�GC) (Shellie et al., 2005) but the technical
problems encountered are by no means trivial. One promising
area for introducing a two-dimensional, orthogonal, separation is
via the hyphenation of the LC separation to an ion-mobility-
based separation immediately prior to mass spectrometry, and
such an instrumental set-up has recently been described (Harry
et al., 2008).

In addition to the complexity afforded by factors such as
the length of the chromatographic gradient and the mode of
chromatography, there is also the choice of ionizationmechanism
to consider as, in addition to positive and negative ESI, there
is alsoAPCI to consider given that, as described above, thismode
of ionization also give access to a slightly different set of
molecules. Self-evidently, there is also the sensitivity of the mass

spectrometer to consider as well as, with increasing sensitivity,
comes a further increase in the number of features detected.

Of course, to a very great extent, the level of detail to which
the metabolome needs to be determined does depends on the
purpose of the study. Arguably, if the aim of the study is to detect
and identify a few ‘‘diagnostic’’ molecules that could be used
in, for example, a clinical setting to monitor a disease or its
treatment, then complete coverage of the metabolic profile of the
sample is less important than finding an appropriate number
of suitable markers. If on the other hand, the aim is to provide
an in-depth characterization of the sample then clearly the
combination of the highest resolution separations systems and
most sensitive mass spectrometers are needed.

G. Validation Issues: Is the ‘‘Marker’’ Real or
Just an Artifact?

As described above (UP)LC–MS is a very powerful tool for
global metabolite profiling; however, potential limitations must
be kept in mind when developing and applying such a methodo-
logy. Such limitations are the potential for drift in both
chromatographic and mass spectrometer performance and the
repeatability and reproducibility of themethod. These limitations
should be recognized and efforts should bemade to control them.
This wouldmean that to eliminate bias due to a gradual change in
the performance of the system, the samples should be analyzed in

FIGURE 6. PCA scores plot generated from UPLC–MS analysis of 120 urine samples from humans in a

QTRAP (A), QTOF (B), and a triple quadrupole (C). Data were extracted and PCA was performed in

MarkerView (A,C) and MarkerLynx (B) data treatment software. Despite instrumentation differentiation

and the utilization of different peak picking and alignment software, PCA scores plots are very similar with

the same samples projected on the same spot in all three graphs. Loading plots (not shown) show the same

ions dominating the variability in all three data sets.
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a random order, and QC samples should be used to monitor the
performance of the system (Sangster et al., 2006; Gika et al.,
2007; Gika et al., 2008b; Michopoulos et al., 2009; Zelena et al.,
2009). QC samples (generally a pool made from the biological
test samples, or a representative bulk control sample) should be
assessed against predefined criteria to enable acceptance or
rejection of the analytical batch. It is also strongly advisable to
implement a number of injections (most conveniently the QC
sample) at the beginning of the analytical run to ‘‘condition’’ the
system. Such conditioning injections, together with those of
standards, can also be used to assess system suitability prior to
beginning themain run of test samples. TheQC sample should be
then analyzed repeatedly at regular intervals throughout the run.
Following the analysis the QC data and selected ions should be
examined first to test for gross changes; these would denote a
large change in the system. This would subsequently mean that
the system is not stable along the run and the quality and integrity
of the data set are suspect.

If the run passes these initial tests, then selected compounds/
ions are monitored and evaluated with criteria having to do with
parameters such as peak asymmetry and peak shape, stability of
signal intensity, mass accuracy, and retention time. A positive
outcomewould not indicate that the run is successful, but that the
data are worth working further. Thus, Figure 7A shows a plot of
the retention timesmeasured for the peaks of hippuric acidwithin
an UPLC-TOF run analyzing 60 human urines over a period of
17 hr. Excellent retention time stability was seen. A similar
observation is seen in Figure 7B that illustrates extracted ion
chromatograms (XIC) for a randomly selected ion, along a
UPLC–TOF-MS run of 114 human urine test samples. In the
figure XICs from seven consecutive QC samples (pooled sample
from the test samples) show very satisfactory analytical
repeatability and precision for both retention time and signal
intensity. It is important that signals are analytically examined
this way as XICs, not only in multivariate statistics which project
the major trends in the data set.

A useful approach is to calculate the CVof the intensities of
all of the ions found in the QC samples and apply quantitative
criteria for the evaluation of the ions stability. We have adapted
the FDA proposed criteria for bioanalytical methods validation
(Viswanathan et al., 2007), which correspond to 20% signal
variability for LC–MS analysis and 30% tolerance for bio-
analytical technologies such as ELISA. For untargeted metab-
olomic analysis by LC–MS (full scan analysis with no use
of internal standards or MRM transitions) values close to 30%
CV could be allowed (clearly highly variable ions, with CVs in
excess of 30%, would not be good candidates as biomarkers).We
typically categorize the ions in groups that pass criteria of
CV< 15%, CV< 20%, and CV< 30%. We then try to calculate
the percentage of these three categories in the total number of
ions.Obviously, the aimof this type of analysis is to have 100%of
ions with CV< 30%, but a data set containing>80%of ions with
CV< 30% would indicate a good quality data set. Given that
many journals now allow the provision of supplementary
electronic data to complement the main publication we now
advocate the value of providing the QC data as supplementary
tables as a means of demonstrating acceptable repeatability (e.g.,
see Lai et al., 2009; Michopoulos et al., 2009). Of importance is
also the relation of an ion mass, RT, and intensity with its
repeatability. This is exemplified in Figure 7 which shows the
distribution of peaks according to the CVvalue for the analysis of

blood plasma. It is seen (Fig. 7C) that a small number of peaks are
rather variable, showing a CV> 30%. A number of these
unstable peaks are typically seen eluting early in the separation
(near the void volume of the LC system) but others are of high
mass eluting towards the end of the analysis. Similar findings
were also observed in the analysis of urine or other biosamples
such as tissue extracts (unpublished observations). Typically
peaks which are less repeatable than others are characterized by
low signal intensity, which is sometimes close to the cut-off level
of the peak picking algorithm.Hence, in certain samples the peak
is picked and in other samples the peak is below the cut-off level
and a zero value appears. Multivariate analyses can cope with a
large number of zero values in the data matrix as described in the
literature (Trygg, Holmes, & Lundstedt, 2007) and also seen by
the authors even with data sets with up to 40% zero values.
However, certain software incorporate a ‘‘gap-filling’’ utility: a
script that re-examines raw data to integrate such peaks that
appear in those samples where the signal is below the cut-off
(noise threshold). This is a useful utility but it is advisable that
researchers use it with caution and investigate the quality of the
results with and without the application of the script. Poorly
repeatable peaks eluting in the solvent front are also common in
water-rich specimens such as urine, which comprise large
numbers of polar components that would elute (unretained) in
the chromatographic void volume. Ion suppression is most likely
themajor source of error for these ions.Varying concentrations of
abundant polar metabolites may also disturb the ionization, and
thus the detection, of other co-eluting metabolites (that have
stable concentrations in the samples) and produce false markers.
Late eluting poorly repeatable peaks, presumably including
lipids and related molecules, are also seen as shown in Figure 7.
In the case of these late eluting components the contamination of
the LC column and retention time drifts are most likely the cause
of the variability in the data, presumably due to poor peak
alignment. Application of strict retention time tolerance where
there is retention time drift may result in the reporting of several
variables for onemetabolite (thesewould have the samemass but
several slightly different retention times). Thorough investiga-
tion of the data set by application of different statistical univariate
and multivariate methods and advanced visualization method-
ologies helps in identifying trends in the data sets but also in
better understanding the biological content of samples (e.g.,
content of polar molecules, content of higher molecular mass
metabolites, and so forth).

If the QC samples pass these preliminary screens then
advanced statistical analysis is applied: Multivariate statistical
analysis can be performed to test whether the QCs cluster closely
together in PCA, or if they show time related or other types of
trend. Highly variable QC data would mean that the run had
failed, whilst close QC data do not automatically mean that the
run was acceptable, but do justify further data analysis. If,
following the statistical analysis of the sample data, potential
biomarkers have been identified it is possible, and advisable, to
re-examine the QC data specifically with regard to the variability
of the results obtained for those ions specifically highlighted
as biomarkers. Figure 8 shows examples of this approach:
Figure 8A shows a PCA scores plot (PC1 vs. PC2 for urine
analysis) where a tight cluster of QCs indicates acceptable level
of data quality. Figure 8B shows the trend plot of a selected ion
illustrating stable performance (repeatable signal intensity in the
QCs and variable in the test samples). Such a repeatable peak
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FIGURE 7. Peak repeatability in non-targeted LC–MS metabonomics analysis. A: Retention time

variationwithin one data set (duration 17 hr); (B) example of excellent stability inUPLC–MSprofiling,XIC

from seven QC injections spread along a run of ca. 130 urine samples. Distribution of ions according to the

signal CV value from the analysis of rodent blood plasma. C: Ions with signal’s CV> 30% (unstable ions).

D: Ionswith CV< 30%.E: Ionswith CV< 20% and (F) ions with CV< 15%. (B) reprinted fromGika et al.

(2008b) with permission from Elsevier.
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could then be investigated further as a potential biomarker.
Figure 8C shows a PCA scores plot (PC1 vs. PC2) on the data
acquired from the analysis of Zucker rat plasma samples. A run
order effect is evident: see the trajectory of the QC samples and
also the sample numbering representing the order of injection.
Nevertheless separation of the normal Zucker (�/�) wild-type
rats (blue dots) from the (fa/fa) strain (green dots) is seen. In such
cases deeper investigation of the data may reveal trends as the
increasing trend shown in Figure 8D for the peak 373.3/9.3.
Peak response is plotted in y-axis and run order within group is in
x-axis. The lean group (�/�) is identified as L (blue dot) and Fat
group (fa/fa) is F (green dot). A useful strategy to evaluate such
run-order effects is to perform t-tests between the first and last
samples of the sample set and then investigate the trends of the
peaks with the highest t-test value (this would indicate ions with
great differentiation in intensity along the run).

Metabolite profiling data sets should be thoroughly tested to
search for such ions/features. In the ideal case features should
showplots such as the one in Figure 8B.However, it is commonly
the case that poorly repeatable ions are encountered inwhich case
the researcher has two options: either to fail the run or to fail the
ion. Removal of ions (features) from data sets may be considered
not to be prudent or useful by hard core informaticians. However,
in the experience of the authors (Lai et al., 2009) and others
(Burton et al., 2008; Ivosev, Burton, & Bonner, 2008) thinning
the data set by removing features that are highly variable, and that

do not show a contribution in group separation, is considered to
be a ‘‘safe’’ option. One way or the other, before digging deeper
into the data to find biomarkers, and then determining their real
concentrations via specific targetedmethods and unambiguously
confirming them as true biomarkers, it is of utmost importance to
make sure that the systems performance is at its best by thorough
examination of the repeatability of mass signal intensity and
retention time data for the majority of the detected ions.

Whilst such factors are a major consideration in meta-
bolic profiling studies of all kinds they become particularly
problematic when large-scale epidemiological studies on
populations to investigate health or nutrition related issues
(specimen mapping, diagnostic biomarkers discovery, drug
toxicity studies, etc.) are undertaken. These studies generate
large numbers of samples, often collected over a period of years,
from many participating subjects. In such cases, whilst it would
be desirable to analyze the complete sample set in one long run
on a single instrument, however, this is obviously wholly
impractical. Either such analyses have to be undertaken on a
single instrument using a large number of analytical runs or they
must be distributed to a number of instruments, possibly in
different facilities. Whichever approach was adopted at some
point all of the data from the analyses of these samples would
need to be combined for data mining. In an ideal case the
analytical systems would be stable and well documented so
that issues such as instrument variability, platform variability, or

FIGURE 8. Utility of the incorporation of QC samples in the sample set.A: PCA scores plot (PC1 vs. PC2)

for urine analysis; tight cluster of QCs indicates acceptable level of data quality. B: Trend plot of a selected
peak (m/z: 204.0/rt 3.7min) illustrating stable performance: repeatable signal intensity in the QCs (red dots)

and variable in the test samples (n¼ 120) along a 48 hr LC–MS run of ca. 140 injections.C: PCA scores plot

(PC1 vs. PC2) from the analysis of Zucker rat plasma samples. Run order effect is evident: see QCs

trajectory and sample numbering. D: Increasing trend plot for an unstable peak. C adapted from Lai et al.

(2010), with permission from Royal Society of Chemistry.
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system stability would not pose problems for metabonomics
studies. Data extraction could occur from the whole data set or it
would be possible to perform data extraction from the smaller
data sets, fuse the data matrices in one, and work further to
identify important biomarkers. Some examples of the successful
application of this approach for urine analysis by NMR
spectroscopy, which is inherently stable and repeatable from
laboratory to laboratory and instrument to instrument, have been
reported (Dumas et al., 2006; Bertram et al., 2007). However, for
LC–MS and GC–MS such approaches are still being developed.
Bearing in mind that typical metabolomics runs range in
length from 10 to 15min for LC and 20–35min or longer for
GC and CE, the throughput per day does not seem impressive
(30–80 samples and QCs per day). In large epidemiological
studies where several hundreds/thousands of samples need to be
analyzed it is obvious that this process would require months
or years of instrument time. Problems then start to appear from
several points: (1) how long are the samples stable? (2) Is the
analytical system stable and how can I express this in quantitative
manner? (3) How can I minimize batch to batch variation?
(4) How can one know when to clean the ion-source or replace a
column? (and can one compare the results before and after such
an intervention?) (5) How can one compare or correlate the data
obtained in one laboratory with those obtained, even on the same
type of instrument, in another laboratory? (6)What about joining
or comparing results obtained on different analytical platforms
(e.g., Orbitrap and QTOF-MS)? (7) Are the biomarkers high-
lighted the same in both platforms or laboratories? Such
questions have been expressed also by other groups and strategies
to address these problems have been proposed. Bijlsma et al.
(2006) report methodological considerations for experiment
planning and data processing for large-scale human metabolo-
mics studies (600 samples). Such considerations andways to treat
unwanted effects and time trends in the analysis of blood plasma
from rats andmice have also been recently reported by our group
(Lai et al., 2009).

All these issues become important as the metabonomic
search for biomarkers can in fact represent a search for items that
are sometimes ‘‘hidden in the grass.’’ In targeted analyses
such issues may be better addressed using internal standards or
correlation to other parameters. In targeted analysis clear cut
criteria have been established following years of development
and debate; for example, FDA or EC directives and guidelines
for the validation of bioanalytical methodologies (EC Directive
86/4691986,36 and 657/2002/EC Commission Decision
2002, 8). However, for holistic analytical approaches there is
no official guide to evaluate these issues. Finally, one should not
forget that the route to valid biomarkers would necessitate
a second study and application of independent analytical
methods, and these steps unfortunately are rarely taken (Koul-
man et al., 2009).

Another ongoing debate within MS-based metabolomics
circles is the fact that toomanyvariables are recorded (sometimes
more than 4,000) from a small number of observations (sample
sets of less than 50 samples). This unbalanced data matrix is not
optimal for many multivaratiate statistical approaches which
were designed to deal with relatively few variables from a large
number of samples.

Bearing in mind that this is a genuinely multidisciplinary
field, it is obvious that analytical chemists (chromatographers
or spectrometrists) with little knowledge of statistics often

come to ‘‘play’’ with user-friendly software for data
treatment and statistical analysis. It is thus very possible that
researchers (unaware of such important critical issues) may
be tempted towards over-fitting and be lead to the wrong
conclusions.

Debate on the above questions is necessary before planning
appropriate experimental protocols to avoid unnecessary varia-
tion. Thus, the appropriate length of an analytical run needs to be
determined to decide themaximum number of injections that can
be performed before data quality is irretrievably affected.
Problems of this kind are documented in both GC–MS (e.g.,
see Fig. 1 in Strehmel et al., 2008) and LC–MS. At present
it seems that (UP)LC–MS can handle several hundreds of
consecutive injections (of volumes of ca. 10 mL) of diluted urine.
However, for plasma or serum much shorter runs (close to 60
injections of samples not including QCs, Lai et al., 2009; Zelena
et al., 2009) has been seen to be the practical limit before
unacceptable deterioration in performance. In such a case
cleaning of the source and the column or even the replacement
of precolumn and analytical column are necessary. But then how
do the results compare when using different columns? A study
conducted by the HUSERMET consortium (Zelena et al., 2009)
reported that there was no visual separation in PCAwhen using
two different UPLC acquity columns for the repeat UPLC–TOF-
MS analysis of a set of 60 samples of human serum (see Fig. 9A).
Furthermore, they have also demonstrated (from the analysis of
the same set for four consecutive days) that PCA shows that the
results of the twofirst days lay closer together than the subsequent
two, and that there was a clear drift in PC1 corresponding to
the run order (see Fig. 9B). This is in agreement with our own
experiences (Fig. 9C) for a set of 60 urine samples, where
separation of blocks of samples is seen in PC2 (explaining 6.5%
of the variation in this study). In this case the 60 urine samples (30
from female and 30male human subjects)were analyzed using an
LC–QTRAP-MS for five consecutive days. As Figure 9C shows,
for the first 3 days the result for the samples lie together and
cannot be separated, whereas the data from the last 2 days are
clearly differentiated. Note that PC1 accounts for 63.4% of the
explained variation (having to do mainly with the biological
variation of the individual samples). It is also interesting to see
how the system becomes stable in this experiment where five QC
injectionswere run first before any test sample to ‘‘condition’’ the
system. In Figure 9D the trend plot of the QC injections only is
shown for the 5 days of analysis. It is seen that the first injection is
always a clear outlier. We have observed that, for urine, five
injections of the QC sample usually suffices to condition the
system and that from the second injection on the samples fall
within the two SD limit. The variation of the initial conditioning
QC samples on the first day of analysis was much larger than
for the subsequent days; this indicates that once the system is
conditioned it can go into the operating conditions much faster.
Nevertheless, it is strongly advised that investigators thoroughly
examine the trends of theQCs and implement such a conditioning
step before the commencement of the analysis. For other
specimens such as blood-derived samples (serum or plasma) a
more complex process is required for system conditioning and
monitoring (see Lai et al., 2009;Michopoulos et al., 2009; Zelena
et al., 2009).

Finally, another source of variability comes from the
samples themselves. Sample stability has been assessed by both
NMR (Lauridsen et al., 2007; Maher et al., 2007) and LC–MS
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FIGURE 9. A: PCA scores plot for data acquired using two UPLC columns from different manufacturing

batches. The scores for all the samples analyzed on both columns are overlaid and there is no visual

separation between the results from both columns. B: PCA scores plot for four identical blocks of human

serum samples (n¼ 60) analyzed over a period of 5 days. The first two runs lay together, but there is a

significant drift for runs 3 and 4. PC1 contributes to 37% of the total variance. C: PCA plot for the LC–MS

analysis of 60 human urine samples in five consecutive days (samples colored according to day of analysis).

D: Plot of t1 versus time shows how QC samples settle down with increasing run number. Extract from the

data set described in (C).E: PCAplot forQCs (human urine) over 7 days storage in the LC–MS autosampler

(�48C). Forty-eight hours seem to be the maximum safe length of time for these samples. (A) and (B)

adapted from Zelena et al. (2009), with permission from American Chemical Society.
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(Gika, Theodoridis, & Wilson, 2008b). It seems that urine
samples are stable for up to 6 months in the freezer (�20 or
�808C) and that 48 hr is the limit for urine samples lying in the
autosampler (at 48C) (see Fig. 9E). After that period samples kept
in the autosampler tend to show significant drift. However, more
data are needed to evaluate the stability of other specimens
and also to evaluate the stability for very-long storage periods
(e.g., 3 years or longer, especially bearing in mind the develop-
ment of biobanks).

H. Data Extraction: How to Treat the
Generated Data?

In this type of holistic metabolite analysis the LC–MS derived
data can be considered as a cube of data points in three
dimensions comprising retention time, m/z value, and signal
intensity. Typically, the raw data obtained in the mass
spectrometer for a metabolomic study represents a series of full
scan mass spectra acquired at a given time point. Data treatment
prior to multivariate statistical analysis involves a number of
processes: noise filtering, baseline correction, centering, norma-
lization, peak picking, peak integration, and alignment. The
overall task of these tools is to detect all peaks and collapse the
three-dimensional data into a two-dimensional data matrix
(a peak-table). A simplified schematic of the process is given in
Figure 10 (from Katajamaa and Orešič, 2007). A more detailed
scheme of data processing that covers also further statistical and

marker evaluation work can be found in Figure 1 in Bijlsma et al.
(2006).

There are several peak-picking software packages available.
Some are freely available, open-source software, which can be
found on the Internet.MSmanufacturers have also developed their
ownbespokemetabolomic software,which in some cases operates
more like a ‘‘black-box’’ and does not allow modifications or
alterations in the way the algorithm operates. In most cases the
software also performs multivariate statistics, such as PCA, and
provides scores plots. Typically, these software packages can
process data originating only from the corresponding mass
spectrometer (e.g., MarkerLynx from Waters (Manchester, UK),
can analyze data fromWaters Instruments, MarkerView similarly
works on data from Sciex instruments). Alternatively, the freely
available software programs such as MZmine, MetAlign, and
XCMS can analyze data in universal formats such as netCDF that
originate from any type of MS instrument and often provide more
information on the processes involved in data treatment (see, for
example, Lommen, 2009).

Some software combine peak picking and alignment with
advanced visualization tools, multivariate statistics (both super-
vised and non-supervised), univariate statistics, and marker
identification functionalities (such as automated database search
and formulae prediction). For example, the XCMS program
(Smith et al., 2006) uses the R platform to perform peak picking,
nonlinear retention time alignment, and relative quantification.
Data extraction can also be performed with in-house developed,
proprietary, software. A list of data processing software is given
in Table 1, and Katajamaa and Orešič (2007) have produced a
comprehensive review on the field. Some of these programs are
directly linked to public on-line databases; web base resources or
data depositories for mass spectrometry metabolomics are not as
well established as for proteomic or genomic research (Arita,
2009) but developments in that direction are being made (see
Tohge & Fernie, 2009 for a review of the topic).

It is accepted that the data processing step is of crucial
importance in metabolomics studies. Hence, it is sometimes
stated that, starting from the same data set, 10 different
researchers will reach 10 different results after data extraction
and multivariate analysis. This may happen in sample sets of
reduced biological variation (e.g., inbred animals living in the
same environment and diet). When applying such advanced
statistical tools, one should remember that these operate
basically as projection methods that highlight the important
trends. So these trends should be viewed with caution and from
various ‘‘angle points.’’ Hence, it is advisable to apply different
scaling methods. These could make huge impact in the resulting
scores and loadings plots. However, as we have indicated (see
also Fig. 6), we have seen that for sample sets of human urine,
analyzed on three different mass spectrometers and subject to
data analysis using two different data treatment software we
nevertheless obtained very similar results (evenwhen altering the
scaling from Pareto to UVand mean centered). Clearly, as LC–
MS becomes even more widespread in its use for global
metabolite profiling there is a need for a focus on interlaboratory,
and cross platform, comparisons to determine data compara-
bility. The truth is that, until hard comparison data are obtained
via, for example, ‘‘round robin’’ tests organized within and
between different analytical facilities, using a variety of software
analysis options, the scale of this potential problem remains
unresovled.

FIGURE 10. Scheme for data extraction: normalization–centering–

alignment–peak picking–integration. From Katajamaa and Orešič

(2007), with permission from Elsevier.
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I. Identification of the Markers

Last but not least comes the most difficult part of a metabolic
profiling exercise: The identification of those metabolites
highlighted as potential markers. The overall aim of any
metabonomics study is to come-up with key molecules that play
an important role in a biochemical process and characterize
certain physiological states. To do this we have to be able to place
a chemical identity against the feature that has been identified by
themultivariate statistical analysis as a pair of numbers:mass and
retention time. This task currently represents themain bottleneck
in contemporary metabolomics. Even in the case of GC–MS,
with its well-established spectral databases, considerable effort is
required, partly because the bulk of the compounds in these
databases are of synthetic rather than biological origin. However,
by comparison, in LC–MS such databases are still under
development and are also often not interchangeable between
different instruments or laboratories. Hence, the effort for full
identification is much greater and may demand a series of
additional experiments.Marker identification can be divided into
two different cases: (1) the identification of known compounds
(also called peak annotation), for example, the assignment of a
feature to a known amino acid and its confirmation against an
authentic standard and (2) the identification of unknown
chemical entities in unknown samples where structure elucida-
tion is also required.

To achieve these ends a number of desired analytical
characteristics are sometimes required: (1) accurate mass
measurements, (2) the study of fragmentation patterns, (3)

isotope ratio determination, (4) neutral loss experiments, (5) H/D
exchange experiments, (6) ring double bond equivalent (RDBE)
calculations, (7) application of the nitrogen rule, (8) interrogation
of existing spectral or metabolic databases, (9) isolation for
additional NMR, TLC, SPE, or GC–MS experiments.

An excellent review article describes in detail the ways to
treat MS signal data to reach the identification of metabolites
(Werner et al., 2008). A brief description is given here:
calculation of the elemental composition is the first step and
the resulting formulae can be used in searching in chemical
and metabolic databases. Accurate mass measurements are
needed instead of nominal mass measurements because the
former are much more informative and helpful. Therefore, mass
accuracy at a level of 5 ppm or better is strongly recommended.
High mass accuracy may reduce the number of candidates to, for
example, a number smaller than 10molecules, but this alonemay
not suffice (Kind & Fiehn, 2007) as it has been reported that even
at 0.5 ppm accuracy, marker identification may fail. In such a
case data from fragmentation experiments and isotope ratios are
the first additional resources. Exploitation of high collision and
low collision energy experiments may provide useful diagnostic
ions and has been proposed as a means of highlighting specific
classes of metabolite (e.g., glucosides or sulfates; Plumb et al.,
2009). Isotope ratios are very useful for elemental composition
determination but they can be affected by interferences and
saturation effects. Ding et al. (2008) used high-end mass
spectrometers (Orbitrap and FT-ICR-MS) for the identification
of lipids. Their strategy was to obtain data-dependent MS/MS
information of human plasma, erythrocyte, and lymphocyte

TABLE 1. Data extraction software

Software Tool Developer/Availability Reference/Information
AnalyserPro  SpectralWorks http://www.spectralworks.com/analyzerpro.asp 

ChromaTOF LECO http://www.leco.com/index3.htm 

COMSPARI Freely available http://www.biomechanic.org/comspari/ 
Expressionist/ 
Refiner  

MS Genedata http://www.genedata.com/products/expressionist/index_eng.html

Genespring*
Mass
Hunter/Mass 
Profiler 

Agilent Technologies http://www.chem.agilent.com

MarkerLynxTM *   Waters http://www.waters.com 

MarkerviewTM  MDS/Applied Biosystems http://www.mdssciex.com/

MathDAMP  Freely available  http://mathdamp.iab.keio.ac.jp/
MetAlign  Freely available http://www.metalign.wur.nl 

MET-IDEA  Freely available http://www.noble.org/PlantBio/MS/MET-IDEA/index.html 

MSFACTS  Freely available  http://www.noble.org/PlantBio/MS/MSFACTs/MSFACTs.html 
Mzmine * Freely available http://mzmine.sourceforge.net/

Profiler M * Phenomenome Informatics  http://www.phenomenomeinformatics.com/pro_M_main.htm 

SIEVE ThermoFisher Scientific  http://www.thermofisher.com/global/en/home.asp 
XCMS / 
METLIN * 

Freely available  http://metlin.scripps.edu/download/ 

MS Resolver, Pattern Recognition Systems http://www.prs.no/MS%20Resolver/MS%20Resolver.html 

Marked with an asterisk (*) are denoted the softwarewith database searching for marker identification.

& THEODORIDIS, GIKA, AND WILSON

900 Mass Spectrometry Reviews DOI 10.1002/mas



lipids in both positive and negative ESI modes to assign lipid
class and fatty acid composition. Identification of lipidmolecular
species was based on manual interpretation and comparison
with Lipid Maps data. The methodology managed to identify
co-eluting glycerophospholipids because these species displayed
characteristic MS/MS fragmentation patterns. Results of this
identification strategy can be seen in Table 2.

Loftus et al. (2008) described the use of a special algorithm
that incorporates MS–MS, ion ratio, and accurate mass data to
automatically provide candidate formulas. Thesewere compared
with known databases to reach identification of phospholipids in
the blood plasma of Zucker rats. If this process finds no (or a
large number of) candidates after searching in the databases
the nitrogen rule and/or RDBE can be used to rule out some of the
candidates. Caution is needed as the nitrogen rule is not reliable
for masses higher than 500 amu and RDBE becomes blurred
when dealingwith sulfur or phosphorus-containingmolecules. In
those cases that the identity is still not reached, preparative LC or
TLC and subsequentNMRorGC–MSanalysismay be needed to

solve the problem. Obviously, this process may be extremely
labor intensive (and time consuming), so it should be undertaken
only for the identification of well-validated and worthy
biomarkers. A schematic of the process is shown in Figure 11
(reprinted from Werner et al., 2008) and related figures can be
found elsewhere in the literature (e.g., Lu et al., 2008b). Effort at
identification may be greatly assisted by the special software
tools developed by the mass spectrometer manufacturers
(marked with an asterisk in Table 1). In Table 3 existing public
databases that contain biological and mass spectral data are
listed. Finally, we should not forget that this type of data is
multidimensional incorporating LC retention time data. If the
latter in some cases may be an additional source of error (due,
e.g., to poor alignment), this is because the LC dimension is also
a source of information. Retention time in LC (and in GC as
discussed in the corresponding paragraph) is governed by the
metabolite molecular properties. In RPLC retention time can be
correlated to octanol/water distribution (logP) although this is
fraught with difficulty in practice. However, the use of logP data

TABLE 2. MS and MS/MS information for individual classes of lipids under both positive and negative ion

modes

Negative mode Positive mode Head group Class

Observed
m/z in MS 

Observed m/z in 
MS/MS

Observed
m/z in MS 

Observed m/z in 
MS/MS

Monoacylphosphocholine (LPC),  
diacylphosphocholine (PC),  
alkenyl-acyl phosphocholine (p-PC),
alkyl-acyl phosphocholine (o-PC),
sphingomyelin (SM) 

[M+H]Phosphocholine +

184 (C5H15NO4P),
[M+H−59]+,
[M+H−183]+,
[M+H−R′2CHCO]+,
[M+H−R′1CHCO]+,
[M+H−R2COOH]+,
[M+H−R1COOH]+

[M+CH3COO]− [M−CH3]−, [M−H]−,
carboxylate anion 

[M+Na]  + 184,
[M+Na−N(CH3)3]+ N/D 

Monoacylphosphoethanolamine 
(LPE), diacylphosphoethanolamine 
(PE),
 alkenyl-acyl phosphoethanolamine  
(p-PE), alkyl-acyl 
phosphoethanolamine (o-PE)

Phosphoethanola
mine

[M+H]+,
[M+Na]+

[M+H−141]+,
neutral loss of 141 
(C2H8NO4P)

[M−H]− Carboxylate anion  

[M+H]Phosphocholine Oxidized phosphocholine +
Loss of water, 
oxygen atom, 
methanol

[M+CH3COO]−
[M−CH3]−, [M−H]−,
[M−CH3OH]−,
 carboxylate anion, 
etc.

Oxidized phosphoethanolamine Phosphoethanola
mine [M−H]  −

[M−H−H2O]−,
[M−H−CH3OH]−,
carboxylate anion, 
etc.

[M+H]Phosphoserine Phosphoserine (PS) + Neutral loss of 185 
(C3H8NO6P) [M−H]− Neutral loss of 87 

(C3H5NO2)

[M+NHPhosphoinositol Phosphoinositol (PI) 4]+ Neutral loss of 277 
(C6H16NO9P) [M−H]− 241 (C 6H10O8P−)

[M+NHN/A Triacylglycerol (TAG) 4]+ Neutral loss of fatty 
acid N/D 

[M+NHN/A Cholesterol, cholesterol esters 4]+ 369 (C 27H45+ N/D ) 

Reprinted from Ding et al. (2008) with permission from Elsevier.
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(already in progress in the Human Metabolome Database)
may assist in identification of unknowns or even in partial
identification of unknown peaks often detected in test
samples. Good practice in metabonomic studies is, of course,
always to confirm any identification by comparison with
an authentic standard where these are available (using two
orthogonal separations if possible) and until this is done any
identification must be considered provisional. Further validation
is advisable: second-stage experiments for sample collection and
analysis again by both untargeted analysis and also by specific
methods to confirm the findings (Koulman et al., 2009).

III. CONCLUSIONS

Metabolomics and metabonomics represent a major research
area in the systems biology arena to complement the information

provided by genomics and proteomics (Blow, 2008; Arita, 2009).
Although NMR is still the technology with the widest utilization
in the field, mass spectrometry is increasingly being applied,
coupled to either gas or liquid chromatography. The application
of LC–MS in global metabolite profiling has certain desirable
features, including the flexibility of the technology arising from
the availability of a range of different separationmechanisms and
media combined with high separation efficiency, MS-based
metabolite characterization and identification, generally good
sensitivity, widespread availability, ease of sample preparation,
and data extraction. This means that the metabolome coverage
provided by LC–MS is probably the most comprehensive
currently available from any metabolite profiling platform.
However, it must be kept in mind that these holistic metabolic
profiling studies may have different end results and aims. If the
scope of a study is comprehensivemapping of certain samples, all
platforms (NMR, GC–MS, LC–MS) should be applied and we
could expect a higher number of metabolites to be found in LC–
MS. If the scope of the study is biomarker discovery, the
collection of larger numbers of variables does not guarantee by
any means that the analysis is more powerful or that it will reveal
better markers. Again application of all three platforms should be
the best and safest resort for more comprehensive metabolome
coverage, better validation of results, or unambiguous marker
identification. Efforts are needed to work in parallel or to
combine these complex data sets (see, for example, GC–MS and
LC–MS data combination in Sreekumar et al., 2009; t’Kindt et
al., 2009; Gao et al., 2008; NMR and LC–MS data combinations
in Lenz et al., 2004b; Law et al., 2009) and to develop tools to
assist data mining.

As more researchers come into the field and as new more
powerful MS machines are introduced (e.g., latest generation
TOF-MS that reach resolution of more than 40,000), the
application of LC–MS in metabolomics will continue to
increase. With the current state of the art, UHPLC coupled to
QTOF or OrbitrapMS seems to be the best choice for this type of
work. Important remaining issues include robustness, instrument
variability, cross-platform comparison (and in fact the lack of
data in that aspect), application in large sample sets, and data
treatment. All these issues are interconnected and related to each
other. Before LC–MS metabolomics and metabonomics can be
considered to have become routine in clinical, toxicity or food
quality applications, solutions (or at least standard operating
procedures), need to be assembled and accepted. Obviously, this
would require common efforts from the research community,
instrument manufacturers, informaticians, and last but not least
the end users. Since this is multidisciplinary research, scientists
from different starting points and disciplines need to co-operate
closely to address current issues and promote the field. This
process may change the way that people are working: for
example, informaticians should understand the reasons why
instrument performance is changing to find ways to overcome
this. Further, clinicians should adapt to the requirements of
metabonomics experiments when collecting/handling samples.
Analytical chemists should learn more biochemistry and/or
informatics and so forth.

Global metabolic profiling studies will continue to increase
as an important area of ‘‘omics’’ research because it provides
answers about what is happening now in the organism (or the
organ) of interest. For this reason metabolomics and metabo-
nomics should address the analysis of target organs (Veenstra &

FIGURE 11. Flowchart of a proposed strategy for the identification

of potential biomarkers found in LC–MS-based metabolomic/

metabonomic analysis. Reprinted from Werner et al. (2008), with

permission from Elsevier.
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Zhou, 2009) and also investigate the correlation of organ profiles
with the metabolite profile of other, more accessible and less
invasive, samples such as saliva or urine, and MS imaging
technologies seem very promising in these aspects. Great
prospects and important discoveries lie ahead in this exciting
research topic.
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