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Abstract: Metabolomics is playing an increasingly important role in plant science. It aims at the comprehensive analysis of the plant me-
tabolome which consists both of primary and secondary metabolites. The goal of metabolomics is ultimately to identify and quantify this 
wide array of small molecules in biological samples. This new science is included in several systems biology approaches and is based 
primarily on the unbiased acquisition of mass spectrometric (MS) or nuclear magnetic resonance (NMR) data from carefully selected 
samples. This approach provides the most ‘‘functional’’ information of the ‘omics’ technologies of a given organism since metabolites 
are the end products of the cellular regulatory processes. The application of state-of-the-art data mining, that includes various untargeted 
and targeted multivariate data analysis methods, to the vast amount of data generated by this data-driven approach leads to sample classi-
fication and the identification of relevant biomarkers. The biological areas that have been successfully studied by this holistic approach 
include global metabolite composition assessment, mutant and phenotype characterisation, taxonomy, developmental processes, stress re-
sponse, interaction with the environment, quality control assessment, lead finding and mode of action of botanicals. 

This review summarises the main MS- and NMR-based approaches that are used to perform these studies and discusses the potential and 
current limitations of the various methods. The intent is not to provide an exhaustive overview of the field, which has grown considerably 
over the past decade, but to summarise the main strategies that are used and to discuss the potential and limitations of the different ap-
proaches as well as future trends. 
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nance spectroscopy (NMR), multivariate data analysis. 

1. INTRODUCTION 

Plants produce a large array of metabolites that are either essen-
tial to sustain plant life via normal metabolic processes such as 
respiration and photosynthesis (primary metabolites) or non-
essential but necessary for survival in a given environment (secon-
dary metabolite). Primary metabolites include proteins, lipids, car-
bohydrates and chlorophyll. Secondary metabolites represent com-
pounds that are not directly involved in the normal growth, devel-
opment, or reproduction of an organism [1-3]. These compounds 
are mainly involved in the survivability and fecundity of a plant and 
are often restricted to a narrow set of species within a phylogenetic 
group. Secondary metabolites play a particularly important role in 
signalling and plant defence [4]. Many of these compounds are also 
referred to as plant natural products (NPs) and have historically 
been an important source of lead molecules in drug discovery due 
to their action on many pharmacological targets [5]. 

Until recently, most of these plant metabolites have been ana-
lysed and detected with targeted methods for very specific pur-
poses, including the evaluation of metabolite diversity in certain 
plant species, the quantitation of bioactive metabolites from me-
dicinal plants and the evaluation of chemical variations in certain 
environments and conditions. With the advent of powerful modern 
analytical methods and the development of multivariate data analy-
sis approaches, these metabolites can be comprehensively analysed 
in complex natural extracts by metabolite profiling and fingerprint-
ing. The purpose of metabolite fingerprinting is not to identify each 
observed metabolite but to compare patterns or ‘‘fingerprints’’ of 
metabolites that change in a given biological system. Conversely, 
metabolite profiling focuses on the analysis of a group of metabo-
lites that is either related to a specific metabolic pathway or a class 
of compounds [6]. In most cases, metabolite profiling follows a 
hypothesis-driven approach rather than a hypothesis-generating 
one. Based on the questions asked, metabolites are selected for 
analysis, and specific analytical methods are developed for their 
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determination. Both strategies can be used in the search for new 
biomarkers and can therefore be considered as complementary [7]. 
When these analyses are performed on a sufficient number of bio-
logical replicates, they enable researchers to discriminate and clas-
sify samples into groups and to monitor changes in metabolome 
composition that are related to a given physiological status, the 
influence of stress or a stimuli, genetic modification, interaction 
with other organisms, and so on. This type of holistic approach has 
been named metabolomics, and it has considerably modified the 
way in which biological issues are investigated. In the related field 
of phytochemistry, metabolomics is considered as the large-scale 
analysis of metabolites in a given organism in different physiologi-
cal states [8]. 

The goal of metabolomics is the comprehensive and quantita-
tive analysis of the largest possible array of low MW (<1,000 Da) 
metabolites in biological samples. It is playing an increasingly im-
portant role in various aspects of life science. Metabolomics is in-
deed a component of systems biology, which comprises a number 
of other ‘omics’ technologies such as transcriptomics (gene expres-
sion) and proteomics (protein expression). Metabolomics provides 
the most ‘‘functional’’ information among the ”omics” technologies 
[9] by offering a broad view of the biochemical status of an organ-
ism that can be used to monitor significant metabolite variations. 
Indeed, because metabolites are the end products of cellular regula-
tory processes, their levels can be regarded as the ultimate response 
of biological systems to genetic or environmental changes. This 
information can be used with other systems biology approaches to 
assess gene function (functional genomics) and to provide a holistic 
view of a living system for its in-depth study [10]. 

Thus, metabolomics represents a promising tool for the post-
genomic study of plant models with respect to variations induced 
by perturbations including environmental changes and physical, 
biotic, abiotic or nutritional stress [11]. From the beginning of the 
21st century, dozens of plant genomes have been sequenced, in-
cluding model plants such as Arabidopsis thaliana (thale cress) and 
crop plants such as Oryza sativa (rice) [12]. In this respect, me-
tabolomics constitutes a powerful tool for plant molecular biotech-
nology and may be used to study the effects of plant breeding, mu-
tation, and other manipulations, such as the expression of engi-
neered genes [8]. 
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Metabolomics is extensively used for studying biologic fluids in 
humans, where it is recognised as a key approach to monitor the 
state of biological organisms and is a widely used diagnostic tool 
for disease [13]. In plant science, the number of studies related to 
plant metabolomics has increased significantly in recent years [14, 
15]. As an example, this approach was found to be very effective 
for investigating plant system issues such as plant stress responses 
[16] and plant-host interactions [17]. 

General problems that are encountered when characterising the 
plant metabolome are the complex nature and the large chemical 
diversity of the analysed compounds. Estimates of the sizes of me-
tabolomes are highly dependent on the studied organism. Some 
authors have suggested a comparable number of metabolites and 
genes [18]; however, it should be noted that there is no direct link 
between every gene involved in metabolism and a given metabolite. 
Other estimates propose up to 15,000 distinct compounds within a 
given plant species [19, 20]. Overall, the plant kingdom is known to 
produce a wide diversity of chemical molecules that is estimated to 
include 200,000 primary and secondary metabolites [21]. With the 
exception of the primary metabolites that are directly involved in 
growth, development, and reproduction, most of these metabolites 
remain unknown. The chemical properties of this array of com-
pounds are greatly variable, and this diversity is a critical aspect to 
consider. Some compounds, such as sugars and lipids, have impor-
tant nutritive value and can occur in very large amounts, while sec-
ondary metabolites involved in signalling defence and resistance 
mechanisms may be present in very restricted amounts. The vari-
ability in molecular weight, polarity and solubility and the wide 
dynamic range of concentrations (from fmol to mmol) constitute an 
additional issue when analysing plant metabolites, as no amplifica-
tion process is available. 

Despite the impressive development of analytical methods in 
plant science, the comprehensive characterisation of a plant me-
tabolome remains challenging. Even with the most advanced meth-
ods, a complete survey of all metabolites that are present in a crude 
plant extract is not possible. As will be discussed in this review, the 
best possible metabolome coverage will be achieved not by a single 
but by multiple analytical approaches [22] to provide a complete 
metabolome profile. 

Finding relevant answers to biological questions using a me-
tabolomic approach is the result of a series of challenges, from the 
choice of a specific sample preparation method and an adopted 
analytical platform to the data processing and modelling proce-
dures. Each step of the process has to be carefully planned.  

From a metabolomic perspective, one would ideally expect to 
be able to monitor, identify and quantify all of the compounds in 
very complex biological matrices in a single analysis with minimal 
sample and in an unbiased manner. Furthermore, data mining 
should provide a comprehensive way to interrogate datasets from 
various viewpoints according to the biological question at hand. 
Metabolomics has not yet reached this level of advancement, 
mainly because of the limitations of the analytical methods that are 
used. In most of the developed approaches, compromises have to be 
made, but nevertheless, a broad survey of metabolome variations 
can be recorded that will ultimately provide new biological knowl-
edge. 

This review gives a broad overview of the challenges that are 
related to plant metabolomics using either mass spectrometric 
(MS)- or nuclear magnetic resonance (NMR)-based approaches or a 
combination thereof. Various aspects will be discussed, including 
experimental setup, sample preparation, analytical issues and the 
downstream handling of data to extract biological knowledge. Since 
the various terms used in metabolomics have been already summa-
rised in other reviews we invite the reader to refer to them for use-
ful working definitions (eg.[23], [22]). 

2. HARVESTING, COLLECTION AND SAMPLE PREPA-
RATION 

The different steps that are involved in a typical metabolomic 
study begin with the correct harvesting and sample preparation of 
the plant material of interest. The next steps include the analysis of 
a sufficient number of replicates for each set of conditions to study, 
multivariate analysis of the data, identification of the biomarkers of 
interest and the extraction of biological knowledge. These different 
steps are summarised in (Fig. 1) for MS- or NMR-based ap-
proaches. 

2.1. Plant Biological Variability 

The levels of plant metabolites vary depending on environ-
mental factors such as light, temperature or soil, and interaction 
with other organisms. Even within the same plant, metabolites can 
differ depending on their developmental stage and the time of har-
vesting [24-26]. Therefore, an appropriate experimental design is 
important to minimise the biological variations of the plant me-
tabolome. When the influence of a specific stimuli, stress or physio-
logical modification needs to be assessed, the biological variability 
should be minimised or the sample number will consequently need 
to be increased to find biomarkers that can be statistically signifi-
cantly correlated to a given effect in a defined biological system. 

Care should be taken to note all the information from the sam-
ples that are used for the experiments. Depending on the variety of 
cultivars (different accession), metabolites from the same plant can 
differ considerably, even if they were grown in the same conditions. 
A good example is Arabidopsis thaliana. Seeds with six different 
accessions were grown in an identical experimental design, but they 
displayed different metabolite profiles (unpublished data) (Fig. 2). 
Any accession can be selected for an experiment, but the accession 
needs to be described. 

2.2. Plant Harvesting 

To reduce biological variability, plants should be cultivated in a 
controlled environment (light, temperature, and humidity controlled 
chamber). Under controlled conditions, the biological variability of 
samples tends to be markedly reduced. All types of treatment (in-
secticides or fungicides) or unwanted types of stress (e.g., insects) 
should be avoided because they may induce uncorrelated variability 
of the extract composition. When plants are grown in a field or in 
the wild, all external factors may influence the metabolome compo-
sition. Thus, for studies that relate to plant physiology, the compari-
son of independent specimens under controlled conditions is usu-
ally performed. Experiments that are performed to compare a group 
of specimens in their natural environment may be considered as 
preliminary studies because of the inherent variability (e.g., for 
chemotaxonomy or origin studies). 

The method of harvesting varies according to the type of study 
(plant physiology, phenotyping, chemotaxonomy, stress response, 
etc.). When detailed metabolome variations that can be related to 
enzymatic activity have to be monitored, rapid harvesting and 
quenching is always recommended, e.g., by freeze-clamping or 
using liquid nitrogen to quench plant metabolism. These aspects are 
extremely important when studies are performed on plant hormones 
or defence signalling. For example, in the case of plant wounding, 
which mimics herbivore attack, harvesting can be perceived by the 
plant as a wound, and the plant reacts within seconds by producing 
signalling molecules [27]. In this case, a delay in quenching may 
alter the level of jasmonates and may lead to a biased interpretation 
of the wound induction of such metabolites. 

When samples are flash-frozen they are usually kept at low 
temperature (-80°C to -196 °C) before use. Samples are generally 
dried before extraction, but metabolic processes may be re-activated 
during this step [28], especially if the drying process is air-, oven-
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Fig. (1). Generic workflows used either for MS-based or NMR-based plant metabolomic studies. 

Fig. (2). 1H NMR (� 8.5-5.5) spectra of different accessions of Arabidopsis thaliana. Plants were grown in the same conditions and extracted with MeOH-
Water (1:1) as described in the reference (Kim et al., 2011). An: Antwerpen, Col: Columbia, CVI:Cape Verde Islands, Hey; Heythuysen, Kas: Kashimir.  

or silica-based. A more suitable technique is freeze-drying, which 
prevents sample thawing because the absence of water reduces 
enzymatic activity [29]. However, the freeze-drying of tissue may 
lead to the irreversible adsorption of metabolites on cell walls and 
membranes [30]. Freezing also destroys the cells and several types 
of biochemical conversions may occur after thawing. These unde-
sirable biochemical conversions should be avoided during thawing 
by extracting the frozen material using a denaturing solvent, or by a 
brief treatment with microwaves to avoid enzyme activation [18]. 
Another solution is to extract fresh frozen tissues directly using a 

solvent or a technique that will inhibit enzyme reactivation. For 
example, solvents may either be heated to 70-80°C, or acids may be 
added (formic or hydrochloric acid). 

Accurate timing is an important issue to consider for proper 
sample collection. If comparisons have to be made, ideally all 
plants should be harvested at the same growth stage and at the same 
period of the day [24]. Plants may exhibit circadian variations in 
their metabolism [26, 31]. When the consequence of a given stimu-
lus needs to be monitored, the harvesting should be performed at 
different time points after stimulation. Depending on the biological 

Sample Collection

Sample Preparation

Data Acquisition

Data Analysis

NMR DIMS LC-MS GC-MS
Direct

solvent extraction
Direct 

solvent extraction 

grinding, quenching of enzymatic reaction

Direct  extraction 
or SPE /LLE enrichment

Extraction and 
derivatisation

Control, wild type… Treatment, diseased, mutants

Dried or Fresh Samples (N specimens)

QCs Blanks

Time

m
/z

m/z

In
t.

In
t.

Chemical shift (ppm)

PC1(28%)

PC
2(

15
%

) C

B

A
sample feature 1 feature 2 feature 3 feature 4

A1 4385217 831295093 14091244 6003304
A1 5504831 862583611 13004658 6153009
A1 3676030 704667972 11856369 5855754
B1 5076726 730603338 18121565 2162876
B2 3984313 775806067 17441759 4977943
B3 3570467 791588562 17283709 2330656

Pre processed data MVDA Biomarker ID



Plant Metabolomics: From Holistic Data to Relevant Biomarkers Current Medicinal Chemistry, 2013, Vol. 20, No. 8     1059

problematic that is being studied, the harvesting can be conducted 
on a time scale to permit the comparison of metabolomic profiles at 
different time points after stimulation. The time requirements of the 
experiments will vary significantly. In the case of wound response, 
the timing of the observation of the induction onset of jasmonate 
will take a few hundred seconds and will reach a maximum at ap-
proximately 90 min [27]. Contrarily, the production of glucosi-
nolates as a result of treatment with methyl jasmonate in Brassica 
rapa will not lead to the significant production of phenylpropanoids 
and indole derivatives until 14 days after treatment [32]. 

In plants, metabolite production occurs in different cell types. 
Ideally, it would be important to compare the metabolite profiles of 
single cells/cell types, but this is still extremely challenging to 
achieve with the current technology. However, localisation studies 
are important to consider, since the metabolomic results obtained 
will only correspond to a mean result of the production of all cells 
at a given time. The metabolome study of a whole organ corre-
sponds to a snapshot picture that will not provide specific informa-
tion about the localisation of individual metabolites and their dy-
namics in the organisms studied. A striking example of localised 
metabolite production is the biosynthesis of phenylphenalenones in 
Dilatris spp. (Haemodoraceae), which was demonstrated by the 
laser micro dissection harvesting of secretory cavities (SC) from 
leaves and the subsequent cryogenic 1H NMR spectroscopy and 
high performance liquid chromatography (HPLC) analysis of the 
micro-dissected samples [33]. Such a level of dissection is not ap-
propriate for most metabolomics studies, but it should be taken into 
consideration that the metabolite content varies between plant or-
gans. It is therefore advisable to separate the different organs prior 
to extraction. In Arabidopsis, for example, it has been demonstrated 
that the concentration of glucosinolates changes spatially within a 
single leaf [34]. Significant differences in organ composition have 
been reported between primary and crown roots of maize [35]. 
Young and old leaves of the same plant can also exhibit differences 
[36].  

Careful selection of the harvesting conditions and the timing are 
critical considerations at the beginning of plant metabolomics stud-
ies. Because metabolomics is a data-driven approach, several itera-
tive cycles with different methods of sampling the plant may need 
to be performed before generating datasets that will yield signifi-
cant information for a given biological issue. 

2.3. Extraction 

In addition to sampling, one key aspect of all metabolomic 
studies is the selection of an adapted extraction protocol that would 
be suitable for the detection of the biomarkers of interest. Extrac-
tion and sample preparation in plant metabolomics are fundamental 
and critical steps with important consequences for the accuracy of 
the results [24]. To increase extraction yields, plants are typically 
ground to a fine powder. When fresh material is used, great care 
should be taken to always keep the tissues frozen during grinding. 
This can be done with a mortar and a pestle using liquid nitrogen, 
or using a mixer mill system [37]. There are various parameters that 
must be considered when performing extractions. 

The aim of metabolomics is to comprehensively profile the 
largest possible array of low MW metabolites in a given biological 
sample. To achieve this goal, generic extraction procedures with 
solvents that can extract compounds over a broad polarity range 
need to be devised. Because there is no single solvent that is able to 
extract and dissolve all plant metabolites to obtain the most exhaus-
tive view of the metabolome, several solvents of increasing polarity 
can be used in succession, e.g., hexane > chloroform > methanol > 
water. However, this type of approach, which is used for classical 
phytochemical investigation and bioactivity-guided fractionation in 
particular, is difficult to implement in metabolomics studies be-
cause it generates many different extracts per sample that have to be 
analysed separately. This, however, is usually not compatible with 

the large number of samples that need to be analysed in metabolom-
ics studies. Alternatively, combinations of various solvents can also 
be used, for example a multiple-phase solvent system composed of 
a mixture of chloroform-methanol-water has been proposed for 
plant metabolomics studies [24]. Most studies are performed either 
with pure MeOH or a mixture containing MeOH [24, 38, 39]. An-
other important point is that the selected solvents should be com-
patible with the analytical technique used. For example, one aspect 
that should be considered is that very lipophilic compounds do not 
elute from C18 reversed phase columns and certain MeOH-water 
mixtures do not extract chlorophylls from plant aerial parts, which 
might be an advantage for incorporating LC analysis in MS-based 
metabolomics. The use of water should be avoided in GC-MS 
analysis, whereas in LC-MS, solvents with elution strengths that are 
preferably lower than or equal to that of the mobile phase should be 
injected. This has consequences on the polarity of the solvent used 
for extraction. In the case of NMR-based approaches, the extracts 
obtained need to be fully soluble in the deuterated solvent used for 
NMR measurements. In NMR-based metabolomics, it is also possi-
ble to directly extract plants with deuterated solvents, and generic 
protocols using 750 �L CD3OD + 750 �L KH2PO4 buffer in D2O
are available [40]. The sample preparation in this type of approach 
is minimised, facilitating high throughput analysis and repeatability.  

Conventional techniques such as maceration and smooth agita-
tion are slow and poorly adaptable to the preparation of numerous 
micro-samples. To accelerate the extraction process, additional 
energy can be applied by directly heating the system or by other 
techniques such as microwave extraction [41], ultrasonic extraction 
[42], ball mill extraction [43], pressurised liquid extraction [44] and 
supercritical fluid extraction [45]. Using such methods, extraction 
times of less than 5 minutes can be attained [37]. 

During the extraction of fresh plant material, enzymes can be 
reactivated, even in mildly polar solvents such as methanol or iso-
propanol, and the use of denaturing agents, heating or the use of 
acids could avoid such problems (see Plant Harvesting section, 
above). This aspect can strongly influence the final results. For 
example, in the case of an MS-based metabolomic study of the 
plant wound response [37], unwounded specimens were harvested 3 
minutes after wounding and were extracted in isopropanol either at 
room temperature or at 75°C. Using boiling isopropanol, a strong 
increase in oxylipin-containing galactolipid levels was measured 
after wounding [46]. This increase was not recorded at room tem-
perature because in the control samples, the enzymes were already 
active during extraction, which was similar to what occurred in the 
wounded plants, and these effects could not be observed [37]. 

2.4. Sample Preparation 

Good sample preparation methods are important to ensure that 
the quality of metabolite profiling and fingerprinting will generate 
reliable datasets and instrument repeatability. Both parameters are 
critical for generating high-quality datasets that will be subjected to 
data mining. For example, sample preparation must avoid sample 
carryover in chromatography-based metabolomics that would oth-
erwise bias a complete data set. In this respect, NMR-based ap-
proaches require minimal sample preparation and there is no inter-
action between the sample and the instrument. Sample preparation 
typically only involves the identification of a deuterated solvent that 
will minimise the chemical shift due to the pH of the sample solu-
tion and result in good quality spectra. In this case, the use of a 
buffer is advised. Among the many available buffers, phosphate 
buffer is commonly used because of its applicability [47]. 1H NMR 
spectra of crude plant extracts are very complex, and sometimes 
simple pre-preparation of samples is required to obtain highly re-
solved signals of the desired metabolites. For example, the signal-
to-noise ratio of the spectra of phenolic compounds in grape ex-
tracts increased after the removal of abundant primary metabolites 
using solid-phase extraction (SPE) [48]. Alternatively, liquid-liquid 
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partitioning can be performed to improve the detection of minor 
secondary metabolites. n-BuOH partitioning was used to concen-
trate the secondary metabolites of a beer sample. As a result, aro-
matic signals were considerably concentrated in the n-BuOH frac-
tion with considerably higher NMR resolution [49]. 

Because most LC-MS-based metabolomics applications use re-
versed phase HPLC, liquid-liquid extraction (LLE) or SPE proce-
dures can be used to remove interfering or undesired compounds 
and to concentrate samples. When using C18 columns, very lipo-
philic compounds such as pigments of lipids must be removed. An 
easy way to achieve this is to filter the samples using SPE with a 
solvent system that contains slightly less organic modifier than the 
solvent that is used for the analysis itself. This will solve the prob-
lem of peak tailing at the end of the HPLC gradient and will prevent 
the HPLC column from being contaminated [50].  

In GC-MS-based metabolomics, volatile samples such as essen-
tial oils can be analysed without sample preparation. In this case, 
they can be collected by steam distillation or headspace. However, 
in the large majority of studies, an additional preparation step is 
required to increase the volatility of the samples. This is especially 
true for the non-volatile (polar) primary metabolites that require an 
extensive chemical derivatisation procedure to increase their vola-
tility and thermal stability. Derivatisation generally involves oxime 
formation (with O-alkylhydroxylamines) followed by trimethylsily-
lation [N-acetyl-N-(trimethylsilyl)-trifluoroacetamide] to replace 
active hydrogens on polar functional groups with less polar 
trimethylsilyl groups, which consequently increases the volatility 
by reducing the dipole–dipole interactions [51]. While more elabo-
rate protocols exist for amino acids [52], trimethylsilylation can be 
used as a universal, mild and quick process for metabolite profiling, 
thus avoiding the need to double or triple the number of analytical 
runs per plant sample, provided that adequate quality control meas-
ures are taken [53]. 

The biological problem that is being addressed defines the me-
tabolomic tool that is required to obtain meaningful analytical data. 
It should be noted that the choice of the analytical method imposes 
certain constraints for the extraction method [24]. Because of the 
wide array of metabolites to be analysed, there is no generally ap-
plicable extraction protocol that is suitable for every biological 
question and for the various analytical methods. As will be dis-
cussed later, the standardisation of methods would be an absolute 
requirement for building a public metabolomics database that can 
be used globally for data-mining and biomarker identification [24]. 
Several protocols are now widely accepted in GC-MS based me-
tabolomics [54], LC-MS-based metabolomics [55, 56] and NMR-
based metabolomics [40, 57]. The strengths and limitations of each 
method have been discussed in a previous review [40]. 

It should be mentioned however that, even if the establishment 
of common protocols is of great importance, their characteristics 
are strongly related to the foreseen applications. When comparing 
plant samples, for example, the variability observed within different 
specimens of the same species (model plant) might be important to 
understand if a given biomarker is relevant or not to a given physio-
logical status or stimuli. In control quality issues sampling might 
differs and, in this case, variations among batches that represent 
pool of plant specimens will be assessed. In this case often the ob-
servation of a restricted set of specific biomarkers previously identi-
fied as being related to a specific property will be monitored. De-
pending on the aim of the study (e.g. sample classification or bio-
marker discovery) the protocols might also have to be adapted. 

3. ANALYTICAL METHODS FOR METABOLITE PROFIL-
ING AND FINGERPRINTING 

With the aim of profiling all the metabolites in plant extracts, 
the analytical method of choice should be able to objectively detect 
a broad range of metabolites over a wide dynamic range, with high 

sensitivity, resolution and repeatability. Furthermore such a method 
should provide qualitative spectroscopic data for biomarker identi-
fication and quantitative information on the observed metabolome 
modifications. Because there is currently no single analytical 
method that can provide all the information needed, two main ap-
proaches are used: NMR and/or MS [22, 58]. Chromatography-
based approaches are employed and most of them rely on MS de-
tection (e.g., GC-MS or LC-MS) [6]. LC-NMR is powerful for 
rapidly providing structural information on single constituents of 
complex mixtures [59]. However, to our knowledge, metabolite 
profiling data obtained by LC-NMR have not been directly used for 
differential metabolomics, mainly because of the lack of sensitivity, 
cost, and low throughput of the method. The use of micro NMR 
methods in direct relation to HPLC, mainly by at-line hyphenation, 
is a however powerful way to identify de novo biomarkers that are 
highlighted by metabolomics and this will be discussed later. The 
types of fingerprints that are generated by these different analytical 
methods, together with spectra that can be used for metabolite iden-
tification, are illustrated in (Fig. 3).

Each of these analytical methods has its strengths and limita-
tions that are summarised in (Table 1).

3.1. NMR-Based Metabolomics 

NMR-based metabolite fingerprinting is used to directly ana-
lyse crude plant extracts without the need for prior chromatographic 
separation [60]. The method is simple, reproducible and has a high 
throughput capacity that does not require specific sample prepara-
tion and enables the detection of all protons [22, 61]. Another ad-
vantage of NMR analysis is the possibility to obtain quantitative 
information because the proton (1H) signal intensity is proportional 
to the molar concentration [62]. In addition, NMR is a very useful 
tool for the structural elucidation of metabolites. As will be dis-
cussed below, MS-based techniques may help the identification of 
metabolite structure by providing molecular formula assignment or 
MS/MS characteristic fragments, but in most cases, NMR is re-
quired for the final identification. In any case, if new metabolites 
are found, diverse one- and multi-dimensional NMR techniques are 
needed, as they provide information for all H and C atoms in mole-
cules with highly reproducible chemical shifts, coupling constants, 
and correlation between atoms [63]. The advantage of NMR spec-
troscopy for structure elucidation is a strong point for plant me-
tabolomics when identifying unknown metabolites. The quality of 
metabolomic studies is dependent not only on the number of de-
tected signals but also on the unambiguous identification of bio-
markers. Depending on the type of study (group classification vs. 
biomarker investigation), a single identified metabolite is more 
meaningful than several hundred unidentified signals. Although 
NMR spectroscopy is a major technique to elucidate the chemical 
structures of small organic molecules, the identification procedure 
is still mostly based on the visual inspection of NMR spectra. In 
contrast to MS, GC-MS databases (e.g., NIST) in particular, the 
lack of generally available databases of NMR spectra of metabolites 
(particularly plant secondary metabolites), is an obstacle for NMR-
based plant metabolomics. However, the high reproducibility and 
robustness of NMR data make it an ideal candidate for the estab-
lishment of a public database for metabolomics.  

3.1.1. Sensitivity and Resolution  

The low sensitivity of NMR is considered the major limitation 
of this application. The signal in an NMR experiment arises from 
the transition between low and high nuclear spin energy states. The 
low sensitivity is because the NMR signal depends on small differ-
ences in the populations of the Zeeman energy levels. For example, 
a 14.1 T magnet produces a 600 MHz frequency for 1H. At room 
temperature, thermal energy is nearly 5 orders of magnitude larger 
than the energy associated with 600 MHz; thus, the two nuclear 
energy levels are almost equally populated, with the low energy
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Fig. (3). Various methods of metabolite profiling or fingerprinting of crude extracts. Lefts panel: NMR (1H-NMR), DIMS (TOFMS) and LC-MS (UHPLC-
TOFMS) profiling. For each method a rough estimates of the number of compounds that can detected in a plant extract are indicated, this range from a few tens 
to about one thousand metabolites according to the technique used. Right panel: 2D NMR of the extract profiled by 1H-NMR for enhanced resolution of the 
features, HR-MS and corresponding MS/MS spectra of s single compounds for metabolite identification, 2D ion map of the HR UHPLC-TOF-MS showing all 
features detected with UHPLC-TOFMS hyphenation. 

Table 1.  Possibilities and Limitations of the Analytical Methods Used for Metabolite Fingerprinting in Metabolomics. 

Sample
Preparation

Reproducibility
Short / long1

Absolute
Quant.

Relative
Quant.

Resolution
LR / HR2

Sensi-
tivity

Univer-
sality

Cpds 
Nb3

Features
type

Data
Mining ID

MS +4 ++/- - +5 ++/+++6 +/++7    +/++8

DIMS ++ ++  /  - - + + / +++9 ++ ++ 1000s m/z x int 1D +/++10

LC-MS + ++  /  - - + ++ / +++ ++ +/++ 100s
RT x m/z x 

int 2D +/++

GC-MS - ++  /  + - ++ ++ / +++ ++ + 1000s
RT x m/z x 

int 2D
++/+++

11

MS/MS ++ ++ / + - ++ NA12 +++13 - 100s
m/z x m/z x 

int 1D ++14

NMR +++ +++ / +++ +++ +++ - / + -/+15 +++16    ++/+++

1D 
NMR +++ +++ / +++ +++ +++ - / + - +++ 10s ppm x int 1D ++

J resolv +++ +++ / +++ +++ +++ + / ++ + +++ 10s ppm x int 1D +

2D 
NMR +++ +++ / +++ +++ +++ +/ ++17 - +++ 10s

ppm x ppm 
x int 2D ++/+++

1Reproducibility is different if series of samples are compared on a long term perspective (long) or within a series of samples analysed at a given moment (short). 
2Low (LR) or High (HR) resolution refers to the resolution of MS or NMR respectively. 
3The number of compounds is different from the number of features detected. The numbers represent a rough estimation. Methods like GC/MS or NMR will generate many features for each compound detected 
contrary to LC-MS or DIMS. 
4In general in MS sample preparation is necessary to maintain instrumental repeatability; this can be very limited as for DIMS for very elaborated as for GC-MS. 
5In MS relative quantification usually expressed as fold changes might be prone to ion suppression. Ion suppression decrease as follows: (ESI>APCI-APPI) , (DIMS>LC-MS>GC-MS). 
6In MS sensitivity is strongly dependant on the ionisation methods and the type of instrument used.  
7For untargeted analyses, the universality of MS will be improved if both PI and NI detection are performed and if multiple ionisation methods are used. DIMS may ionise all metabolites if no ion suppression 
occurs. LC-MS is more suited for polar to medium polar compounds in RP mode. GC-MS is more suited for volatile or polar small metabolites after derivatisation. 
8The biomarker identification potential of MS is strongly dependant on available MS or MS/MS databases which are generally instrument specific. 
9Depending on the MS analyser, resolution isobaric compounds maybe resolved or not. Isomers cannot be seprated even on HR FT-ICR-MS. 
10Depending on the resolution molecular formulae can be determined unambiguously. 
11EI ionisation in GC-MS provides spectra that are searchable in widespread databases. 
12Not applicable 
13MS/MS acquisition can be used in the MRM mode for semi-targeted metabolomics approaches that give higher sensitivity but are more selective  
14MS/MS alone or in combination with LC (LC-MS/MS) provide complementary structural information to MS. The identification is however strongly dependant on the MS/MS library at disposal. 
15Intrinsic sensitivity of NMR is at least one order of magnitude less than MS but the use of new probe technology and high fiel NMR magnet cope in part this problem 
16NMR enables the detection of all metabolites bearing protons provided that they are soluble in the solvent used. 
172D NMR (eg 1H-13C correlations) give and additional dimension for resolving the features 
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nuclear state in excess of the upper (i.e. the polarisation) by only 1 
in 10,000 spins. The net result is that most of the potential NMR 
signal is cancelled, and only the small excess is detected [64]. Due 
to this low sensitivity, the required amount of samples is often 
higher than those of other analytical platforms. One way to improve 
sensitivity would be to increase the magnetic field because the S/N 
ratio roughly increases between B0

1.5 and B0
1.75 (nuclear relaxation 

and detection efficiency complicates this relationship) [65]. How-
ever, this is an extremely costly option because the price of NMR 
spectrometers roughly doubles for each increase of 100 MHz in 1H
operation frequencies. A recent advance in the constant efforts to 
improve sensitivity was the development of microcoil probe heads 
where the sample volume can be reduced by a factor of 20–100 
compared to conventional probe heads [66, 67]. A further milestone 
in sensitivity improvement is the use of low temperature probes 
[68]. In these probes, the sample remains at room temperature, but 
the electronics, one of the main sources of noise in NMR spectro-
scopic measurements, are cooled down to 20 K (�253 °C) by bath-
ing them in a cryogen such as liquid helium. These typically enable 
a 3–4-fold enhancement of the detection sensitivity in high-
resolution NMR compared to the corresponding conventional 
probes [68]. Consequently, it is possible to measure considerably 
smaller amounts of substances or to decrease the measurement time 
for a fixed sample concentration. 

Another aspect of NMR to be considered, particularly in me-
tabolomics, is the resolution of NMR spectroscopy. 1H-NMR de-
tects all molecules containing protons; therefore, large numbers of 
signals are measured in a single 1H-NMR spectrum. Hundreds of 
signals are detected in a 1H-NMR spectrum, and a considerable 
number of signals overlap, which hampers identification. There are 
several ways to overcome this problem, and one of the most useful 
methods is the use of two-dimensional (2D) NMR spectroscopy. 2D 
NMR is useful for increasing signal dispersion and for elucidating 
the connectivity between signals, thus helping to identify metabo-
lites. Many 2D NMR experiments are useful for signal assignment 
and further structure identification, but the spectra can also be used 
for multivariate data analysis with increased resolution [60, 69]. 

Considering their sensitivity and resolution, the use of 11.7 T 
(500 MHz proton frequency) or 14.1 T (600 MHz) magnets is gen-
erally accepted in current metabolomics studies. The increased 
frequency also results in the proton spectra being better resolved. 
NMR instruments with high magnetic fields are thus being increas-
ingly used in the field of metabolomics. 

Another aspect of importance when studying plant extracts is 
that metabolites can be present over a wide dynamic range and 
some major metabolome constituents maybe very dominant while 
minor ones can be difficult to detect or being masked by the major 
metabolites. In NMR, since the signals recorded are directly linked 
to the abundance of given compounds very abundant metabolites 
(e.g. sugars) may render the detection of minor constituents diffi-
cult. In MS, because of the specificity of the detection, such type of 
problem can be avoided but high amount of specific metabolites 
contaminate the ion source and biased the data. These issues can be 
partly avoided by adapted sample preparation of by using data min-
ing methods (UV scaling) that give less weight to the intensities of 
the features in multivariate data analysis (see section 4.3). 
3.1.2. 1D and 2D NMR Metabolomic Approaches  

1H NMR is routinely used in metabolomics because the NMR 
fingerprints provide a universal unbiased detection of all molecules 
that contain protons, and they can be generated with high through-
put. A combination of chemical shift (the nature of the chemical 
environment in which a particular nucleus is located), spin–spin 
coupling (number and nature of nearby nuclei, and thus connec-
tivity information) and peak intensity (concentration of protons), 
allow the rapid identification of any components of interest in the 
analysis. To obtain reproducible results on concentration, parame-

ters such as relaxation delays, pulse widths, and acquisition times 
are important. The optimum range of the parameters for quantita-
tive 1H-NMR has been well documented [70].  

Compared to the analysis of pure NPs, the fingerprinting of 
crude extract in plant metabolomics requires the optimisation of 
several NMR parameters. One issue in measuring 1H-NMR spectra 
is the large signal of the residual non-deuterated water signal, which 
could overlap with the anomeric protons of sugars or glycosides (�
4.8-5.2). To suppress this undesired water signal, several methods 
can be applied. 

Popular water suppression techniques are weak radiofrequency 
irradiation (pre-saturation (pre-sat)), gradient-based methods such 
as WATERGATE (water suppression by gradient tailored excita-
tion) and combinations of gradient and weak radiofrequency pulses 
such as WET (water suppression enhanced through T1 effects) [71]. 
Because of its simplicity and robustness, pre-saturation is the most 
widely used among these methods.  

For accurate suppression, the temperature and pH of the sam-
ples should be carefully adjusted because the water signal is greatly 
affected by these factors. Depending on the molecular size of the 
metabolites, specific pulse sequences need to be applied. To filter 
out the signals of small molecules from those of large ones, spin 
diffusion differences can be utilised. This was shown in an NMR-
based study on toxin-induced changes in lipoprotein profiles [72]. 
In the case of matrix-containing macromolecules (e.g., proteins or 
lipid vesicles), the application of a spin-echo sequence, such as the 
Meiboom-Gill modification of the Carr-Purcell (CPMG) pulse se-
quence, allows the attenuation of unwanted resonances from mac-
romolecules [73]. 

While the 1H nucleus is the most commonly detected atom in 
metabolomic studies, 13C has also been employed for such analyses. 
In 13C NMR, the chemical shift dispersion is twenty times greater, 
and spin–spin interactions are removed by decoupling. These prop-
erties can offer the potential to greatly simplify the acquired spec-
trum in terms of resonance overlap. In addition, for aqueous sam-
ples, there is no requirement for solvent suppression, which can 
result in the loss of some spectral information in 1H NMR studies. 
Despite these advantages, the low sensitivity of 13C NMR, due to its 
lower natural abundance and gyromagnetic ratio, prevents its rou-
tine use in metabolomics. One approach to avoid this limitation is 
to use 13C-enriched samples and to follow metabolic flux. For ex-
ample, 13C can be transferred from 13C labelled glucose to other 
endogenous metabolites [74]. 

The most useful 2D NMR experiment in metabolomics is most 
likely the 1H-1H J-resolved NMR. This experiment provides spectra 
that exhibit a coupling constant in a dimension that is orthogonal to 
the chemical shift axis. A sky-line projection of the obtained 2D 
plot onto the chemical-shift axis yields a fingerprint of peaks from 
the small molecules, with all spin-coupling peak multiplicities re-
moved. (Fig. 4) shows one of the examples of increased resolution 
of this spectrum compared to a standard 1H NMR spectrum ob-
tained on a grapevine leaf extract. The obtained high-resolution 
fingerprint was used to characterise both the resistant and the sus-
ceptible cultivars and their response against the pathogen. Relevant 
biomarkers were identified after multivariate data analysis [39].  

3.2. MS-Based Metabolomics 

MS is playing an increasingly important role in the progression 
of proteomics and metabolomics, and it enables the sensitive detec-
tion of most plant metabolites [23]. In simple terms, the MS plat-
form measures of the mass-to-charge ratio (m/z) of elemental or 
molecular species via an experimental workflow that can be sum-
marised as follows [22]: I) generation of charged species, which is 
necessary to enable ion manipulation in an ion source that is oper-
ated at atmospheric or vacuum pressure after sample introduction; 
II) separation, in space or time, of ions based on their m/z ratio in a
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Fig. (4). J-resolved NMR spectrum and its skyline projection of grapevine leaf (‘Regent’ cultivar analysed after 48 hours of pathogen (Plasmopara viticola)
inoculation). Modified from [39]. 

mass analyser; and III) detection of ions either physically at a detec-
tor as an ion current or by the detection of orbital frequencies as 
image currents. More details on the mode of operation of mass 
spectrometers can be found in dedicated reviews [7, 75, 76]. In 
metabolomic applications, two main steps are critical: metabolite 
ionisation (the correct ionisation method needs to be selected to 
observe the maximum of m/z features of a given sample) and ion 
separation by the mass analyser (high or low resolution MS instru-
ments can be used and will strongly influence the number of fea-
tures detected). Unlike NMR, MS detection is not universal, and 
MS ionisation is strongly compound-dependent; thus, intensities of 
the ions observed cannot be directly related to the concentration of 
the analytes.  

MS can be used by the direct infusion of a crude extract solu-
tion in the mass spectrometer in an approach known as direct injec-
tion MS (DIMS). Alternatively, MS can be hyphenated to different 
chromatographic techniques that provide separation of the analytes 
prior to MS detection. For this, three main techniques have been 
applied: gas chromatography–MS (GC–MS), liquid chromatogra-
phy–MS (LC-MS) and capillary electrophoresis-MS (CE-MS). The 
majority of plant metabolomics studies have been performed by 
GC-MS [54] or LC-MS [55] approaches. CE-MS represents an 
interesting alternative approach, particularly for the profiling of 
either polar or charged metabolites, offering high resolution of the 
analytes [77, 78]. However, it has been infrequently applied to plant 
tissues. 

3.2.1. Ionisation 

Ionisation is common to all MS approaches used in metabolom-
ics. The majority of MS studies are based on electrospray ionisation 
(ESI). This ionisation method can be used with DIMS, LC-MS and 
CE-MS approaches. In ESI, a high voltage field (3–5 kV) is applied 
on a capillary through which the sample flow and produces the 
nebulisation of the infused solution or the liquid effluent, resulting 
in charged droplets that are directed toward the mass analyser. 
Various configurations and ion source geometries exist, but the ESI 
process can essentially be summarised as follows [75]: the electro-

static spraying of a sample solution initially generates an aerosol of 
charged droplets. Sometimes a concentric flow of gas, such as N2,
is used to facilitate this nebulisation process. The charged droplets 
consist of both solvent and analyte molecules with a net positive or 
negative charge, depending on the polarity of the applied voltage. 
Eventually, ions are released from their surrounding solvent, and 
these ions travel into the mass analyser of the spectrometer. With 
ESI, protonation/deprotonation is the main source of charging for 
biologically relevant ions. Different types of adducts with salts or 
solvent molecules may also be generated according to the nature of 
the analytes. It is important to note that analyte ionisation is largely 
compound-dependant and is mainly governed by either pKa (ESI) 
or gas-phase proton affinity (APCI). In a good approximation, 
acidic molecules (e.g., carboxylic acids or phenolics) will mainly 
produce [M-H]- in negative ionisation (NI), while bases (e.g., alka-
loids, amines) will generate [M+H]+ in positive ionisation (PI). 
Thus, the comprehensive coverage of most metabolites requires that 
PI and NI modes be used to survey of a maximal number of me-
tabolites [55].  

As an example, (Fig. 5) displays a typical electrospray PI/NI 
profile obtained for the crude extract of maize leaves and illustrates 
the complementarity of both detection modes [79]. While most 
compounds were ionised in both the PI and NI modes, some were 
only detected with one polarity. The MS spectra of a specific com-
pound show the diversity of molecular ion species that can be re-
corded. Thus, a combination of the qualitative information obtained 
in both models is very useful to determine the molecular mass (M) 
when an unknown analyte is detected. The molecular formula can 
be determined if high-resolution MS data are obtained. In this ex-
ample, C17H22NO13 was calculated from the ion at m/z 448.109 in 
NI and C16H21NO11Na was deduced for the m/z 426.114 ion in PI. 
The exact molecular formula that matches both ionisation modes 
was C16H21NO11, which corresponded to DIM2BOA-Glc, a ben-
zoxazinone derivative that is a well-known component of maize 
leaves [80].  

ESI is widely used in proteomic and metabolomic studies. In 
proteomics, ESI mainly produces multiply charged ions of the
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Fig. (5). PI ESI (upper side) and NI ESI (lower side) UHPLC-TOFMS profiling of a crude maize leaf extract. The comparison of both total ion chromatograms 
(TIC) shows the complementarity of detection of both ionisation modes. Arrows highlight one feature detected in both PI and NI modes. Right panels: PI and 
NI mass spectra extracted from the peak at RT= 8 minutes highlight several adducts encountered for DIM2BOA-Glc a known benzoxazinoid. 

peptide and protein; however, in metabolomics, most of the ana-
lysed small molecules are singly charged. ESI provides the ionisa-
tion of a very broad array of analytes, which is advantageous for 
metabolomics studies, but this ionisation method is also prone to 
important ionisation suppression effects that can limit the repro-
ducibility, accuracy, and sensitivity of relative quantification stud-
ies. An appropriate sample preparation method, the use of chroma-
tographic methods with high resolution prior to detection and/or the 
selection of similar sample matrices decrease the impact of ion 
suppression on the acquired data [81].  

In LC-MS based studies, other alternative ionisation methods 
can also be used. These methods include atmospheric pressure 
chemical ionisation (APCI) - ionisation of neutral molecules in the 
gas phase by chemical ionisation, and atmospheric pressure pho-
toionisation (APPI) - UV light photons are used to ionise sample 
molecules [82]. These two techniques may be more efficient than 
ESI for the ionisation of relatively non-polar metabolites. As a rule 
of thumb, polar and high MW metabolites are more suitable for 
ESI, low MW compounds of medium to low polarity are better 
ionised in APCI, and APPI covers an intermediate region in terms 
of MW and polarity [6]. All these API methods produce a soft ioni-
sation and induce little or no in-source fragmentation. Thus, the 
features detected in API-MS based metabolomics mainly corre-
spond to singly charged molecular ion species of different forms: 
protonated or deprotonated molecule adducts, dimers or oligomers 
that are formed in-source. An example of these various PI and NI 
ion species is provided in (Fig. 5).

Another ionisation method that is widely used but that is only 
commercially available with GC-MS based approaches is electron 
impact ionisation (EI). In EI, energetic electrons interact with ana-
lytes that are already present in the gas phase molecules to produce 
ions. These electrons are produced by heating a wire filament and 
are accelerated to 70 eV in the ion source. Close passage of highly 
energetic electrons induces ionisation by production of radical 
cations. Compared to the API method, EI is a hard ionisation 

method that instead of generating stable molecular ion species 
mainly yields fragments. One of the advantages of the technique is 
that it will yield reproducible fragmentation patterns in spectra that 
are directly searchable in GC-MS for biomarker identification. Fur-
thermore, and contrary to LC-MS, ion suppression is very limited in 
GC-MS. A limitation of GC-MS is that it is only applicable to vola-
tile compounds or compounds that need to be derivatised to be ion-
ised. 

Other ionisation methods that can be directly applied on solid 
matrices include desorption electrospray ionisation (DESI) and 
matrix-assisted laser desorption ionisation (MALDI) [75]. How-
ever, to our knowledge, desorption methods have been less fre-
quently used in plant metabolomics, but they may be important for 
the spatial localisation of metabolites in imaging MS studies (see 
below). 

3.2.2. Mass Spectrometry Platforms and Resolution 

In each of the MS-based approaches described, many types of 
mass analysers can be used. A few of the key aspects that will af-
fect the quality of the data obtained are the resolution, mass accu-
racy, spectral accuracy (isotopic pattern reproducibility) and sensi-
tivity of the platform chosen. Accordingly, two main types of mass 
analysers can be considered: i) low-resolution (LR) MS, such as 
single quadrupole (Q) or ion trap (IT) mass spectrometers [75] and 
ii) high-resolution (HR) MS such as time-of-flight (TOF) instru-
ments [75], Orbitraps [83], or FT-ICR-MS [84]. To detect the larg-
est possible number of features and obtain a detailed picture of the 
plant metabolome, high sensitivity and high resolution are required. 
However, the cost associated with high sensitivity and resolution 
instruments should be considered to assess the true benefit in terms 
of the data generated in relation to a given biological issue. Fur-
thermore, the compatibility of MS analysers, especially when used 
in combination with chromatography, should be taken into account. 

LR-MS instruments such as quadrupoles and ion traps can be 
used in combination with chromatography approaches (GC-MS and 
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LC-MS). Such benchtop platforms are relatively cheap and the use 
of a separation technique before MS detection provides an orthogo-
nal method for resolving the features. In such cases, even a low MS 
resolution might be sufficient for the acquisition of informative MS 
datasets. Accordingly, even with a simple quadrupole mass ana-
lyser, a GC-MS platform was successfully used to profile more than 
300 metabolites in various Arabidopsis genotypes [9]. 

In the field of metabolomics, more expensive and efficient HR-
MS instruments [85] should be used to increase the resolution of the 
analytes in the MS dimension. This is the case for time-of-flight 
(TOF) MS that provides resolution up to 20,000 and can be oper-
ated with a high acquisition frequency over a broad mass range that 
is compatible with rapid chromatographic methods without com-
promising sensitivity [86]. The possibility to acquire HR-MS data 
at high frequency is a key point for the recording of LC-MS me-
tabolite fingerprints. Because a high throughput method is generally 
needed to handle the large number of samples and replicates that 
are analysed, fast chromatographic methods such as ultra-high pres-
sure chromatography (UHPLC) are used prior to MS detection [87]. 
Such fast LC methods generate narrow LC-peaks (typically 3-4 sec 
width) and many MS scans across these peaks need to be recorded 
for satisfactory peak area integration in the peak picking process. 
Other HR-MS instruments, such as Orbitraps [83], also provide an 
attractive alternative for metabolomic studies. New generations of 
such instruments are capable of achieving a resolution of approxi-
mately 70,000 at acquisition speeds that are compatible with rela-
tively fast chromatography. For the analysis of complex mixtures 
without separation, extreme MS resolution may be required. For 
this purpose, resolution that can exceed 1,000,000 can be obtained 
using Fourier Transform Ion Cyclotron Resonance (FTICR). Al-
though these instruments are expensive, they are being used more 
frequently as reference instruments for numerous studies [84]. An-
other advantage of these different HR-MS instruments is that they 
provide high mass accuracies ranging from 5 to 1 ppm according to 
the type of instrument used. Such information is particularly useful 
for peak annotation of metabolite identification, as discussed later. 
Furthermore, the high mass accuracy ensures the high repeatability 
of the MS analysis and the precise alignment of the data for further 
comparison by data mining. 

Many of these analysers are used either alone (ion trap type of 
MS: LIT, QIT, Orbitrap) or in combination (QqQ, Q-TOF) for per-
forming tandem MS experiments (MS/MS or MSn) that generate 
structural information by fragmentation of molecular ion species 
through collision induced dissociation (CID) [6] or that generate 
data in semi-targeted metabolomic approaches [88]. In this respect, 
triple-quadrupole (QqQ) MS–MS systems are the most commonly 
used. Ion-trap (IT) mass spectrometers have the unique capability 
of producing multiple-stage MS-MS (MSn) data that may be essen-
tial for structural elucidation. For HR measurements in MS-MS, the 
Orbitrap Fourier transform (FT) MS instrument provides high qual-
ity spectra for metabolite identification [89]. In addition to these 
types of mass spectrometers, there are growing number of addi-
tional varieties, including hybrid systems that combine LR and HR 
analysers for specific applications [82]. Such information is also 
important for data analysis and will be discussed later. 

The principle of operation of these different analysers can be 
found in several reviews [22, 75, 82, 90]. Some of the key features 
are summarised in (Table 1).

3.2.3. Direct Injection MS (DIMS) 

One of the easiest ways to rapidly generate a detailed metabo-
lite fingerprint of crude extract is by direct injection or direct infu-
sion MS methods. DIMS is a strategy to introduce a sample directly 
into an ESI-MS spectrometer for a short time period. In DIMS, the 
complex extracts are solubilised and injected through the ESI inter-
face or in an automated manner to introduce the sample as a plug 
supplied by a LC system. Alternatively, samples can be introduced 

completely independently using chip-based infusion through 
nanoelectrospray ionisation with a robot that infuses the samples at 
a nL/min flow rate in a dedicated nano ESI spray nozzle that is used 
once for each sample [91]. The advantage of such an approach is 
that it minimises ion suppression and decreases source contamina-
tion [92]. The first application of this technique for fingerprinting 
crude extract was proposed in 1996 on a nominal mass resolution 
mass analyser for the analysis of fungal extracts [93]. However, as 
mentioned above, FT-ICR-MS [94] is one of the best detectors for 
this type of approach. Other less expensive benchtop HR-MS in-
struments such as TOF-MS [95] or Orbitrap [96] might also be 
considered. The recorded metabolite fingerprints consist of total 
mass spectra (TMS) that are summed over the different scans that 
are acquired during infusion. The features for data mining are re-
ferred to as 1D data and are represented by m/z ions vs. intensities. 
Such datasets are naturally well-aligned due to the high mass accu-
racy of HR-MS and can be easily compared with multivariate data 
analysis (MVDA) (see below). 

This approach has the advantage of being rapid and not requir-
ing chromatographic separation prior to MS detection. Thus, theo-
retically, all metabolites elute into the MS and none will be retained 
by the direct injection device. In this respect, it is comparable to 
NMR, which also generates1D data. DIMS is sensitive and enables 
the detection of a large number of features as shown in (Fig. 1). The 
short analysis time increases the inter-sample reproducibility and 
improves the accuracy of subsequent cluster analysis [7]. One of the 
main disadvantages is that isomers, that are often present in plant 
extracts, will not be separated even if extreme HR-MS resolution is 
used because they share the same molecular formulae. For example, 
hexose sugars cannot be discriminated. Because all metabolites are 
injected simultaneously, significant ion suppression effects may 
occur, which increases the overall analytical variability and is det-
rimental for sample comparison. Additionally, contamination by 
non-volatile residues can cause a rapid deterioration of instrument 
performance. In comparison, in infusion experiments, great care 
needs to be taken to avoid sample carry-over. This problem can be 
overcome by using chip-based infusion technology where every 
sample is ionised in a separate nano ESI spray nozzle [91]. 

Because DIMS does not provide chromatographic separation, 
the ability to identify metabolites is limited [22]. However, the 
application of high mass accuracy (sup-ppm mass accuracies can be 
obtained [91]) and MS/MS experiments is useful in providing a 
higher degree of metabolite identification. The use of tandem mass 
spectrometry experiments in a more targeted detection manner and 
the application of multiple reaction monitoring (MRM) provide 
greater specificity and an improved S/N ratio for certain metabolites 
[22]. 

Total MS fingerprinting spectra can also be obtained with alter-
native ambient ionisation techniques methods such as desorption 
electrospray ionisation (DESI) [97], extractive electrospray ionisa-
tion (EESI) [98] or by direct analysis in real time (DART) [99, 
100]. DESI and EESI employ charged liquid sprays from an elec-
trospray source directly to sample biological systems without any or 
with minimal sample preparation and at ambient conditions [22]. 
DART, rely upon formation of a (distal) plasma discharge in a 
heated gas stream and thus is an APCI-related technique [101]. 
With all these approaches, no extraction is necessary and these 
methods can be directly applied on the biological material of inter-
est [102] [100]. Similarly, matrix-assisted laser desorption ionisa-
tion (MALDI)[103] can also be applied. With MALDI, and unlike 
ESI where analyte ions are produced continuously, ions are pro-
duced by the pulsed-laser irradiation of a sample. The sample is co-
crystallised with a solid matrix that can absorb the wavelength of 
light emitted by the laser [75]. The method is very sensitive and can 
directly extract MS information from discrete spots on an intact 
biological sample such as a plant leaf. The high spatial resolution of 
MALDI enables the possibility to localise metabolites on a biologi-



1066    Current Medicinal Chemistry, 2013, Vol. 20, No. 8 Wolfender et al. 

cal sample by rapid rastering across the sample to collect data from 
multiple areas in a relatively high-throughput manner. The collected 
MS information provides spatial mapping of all metabolites simul-
taneously in an approach defined as MS imaging (MSI) [104]. This 
approach has important potential in metabolomics. Although it has 
been used for the analysis of mammalian tissues [105], it has not 
been widely applied to plants [103]. For example, it was used for 
the differential mapping and localisation of glucosinolates in spe-
cific cells of reproductive organs of Arabidopsis [106]. This study 
demonstrated the potential of MSI for understanding the cell-
specific compartmentalisation of plant metabolites and its regula-
tion. Recently, such methods have been used to analyse the induc-
tion of metabolites in the confrontation zone of microorganisms in 
solid media culture [107]. 

On main disadvantage of MALDI, however, is the presence of 
the matrix, which causes a large degree of chemical noise to be 
observed at m/z ratios below 500 Da. As a result, samples with low 
molecular weights are usually difficult to analyse by MALDI [75]. 
Alternative methods such as matrix-free laser desorption ionisation 
applied (LDI) on silicon may circumvent such problems [108]. 
Additionally, very recently NanoDESI (MS), combined with the 
alignment of MS data and molecular networking, has enabled the 
direct monitoring of metabolite production of living microbial 
colonies grown on Petri dishes without the need for chemical tags, 
labels, or any sample preparation on the surface. This opened new 
possibilities to study metabolome modifications of microorganisms 
in a spatial or temporal manner [102]. 
3.2.4. Hyphenated Mass Spectrometry Methods  

As previously indicated, direct MS methods such as DIMS en-
able the rapid and high-throughput screening of hundreds of sam-
ples, mainly for metabolite fingerprinting, but they have limited 
quantification and metabolite identification capabilities. The cou-
pling of MS with separation techniques (GC, LC or CE; “hyphen-
ated methods”) is extremely powerful in terms of the detection, 
quantification and identification of a wide range of metabolites. 
Another advantage of the coupling of MS with separation methods 
concerns the decrease of matrix effects, which negatively affect the 
detection of low concentration analytes [6]. Hyphenation enables a 
bi-dimensional detection where each detected feature is resolved in 
both chromatographic (retention time, RT) and mass spectrometric 
(m/z) dimensions. The analytical signals obtained in this case have 
the following format: RT x m/z x peak aera. This generates intrinsic 
bi-dimensional (2D) data that render data mining more complex and 
that require alignment, especially for the chromatographic dimen-
sion (see data mining section). These approaches require rather 
longer analysis times because of the chromatographic separation 
(typically 10–60 min). The throughput can, however, be increased 
using faster chromatographic techniques such as Fast-GC [109] or 
UHPLC [50]. These methods can be used for both rapid metabolite 
fingerprinting and high-resolution profiling [50]. Another advan-
tage is that once a biomarker is localised in a chromatogram, its 
physical isolation is possible after the optimisation of the chroma-
tographic conditions. This is a key point for the de novo structural 
determination and/or bioactivity characterisation of a given bio-
marker [110]. 

3.2.4.1. Liquid Chromatography Mass Spectrometry (LC-MS)

LC-MS has been applied to various fields of plant science since 
its introduction as a practical analytical technique in the late 1980s 
[111]. Historically, this method has required more technological 
development than GC-MS because the main issue in LC-MS has 
been handling the relatively high liquid flow rates out of HPLC that 
are often not compatible with the high vacuum required for the MS 
detection. Since the early 1980s, many different interfaces have 
been developed to address this issue and overcome the inherent 
difficulties [112]. Currently, the overwhelming popularity of LC-
MS is largely due to a series of interfaces operating at atmospheric 

pressure (API), including ESI and APCI and to a lesser extent 
APPI, as discussed above. LC-MS is currently the most widely used 
mass spectrometry technology, particularly in the life science and 
bioanalytical sectors [113]. 

Numerous types of mass spectrometers described above can be 
used for LC-MS applications. Low-resolution (LR) mass spec-
trometers, such as single quadrupoles (Q), can be used and are the 
least expensive. High-resolution (HR) mass spectrometers and 
those with exact-mass capabilities, such as the latest generation 
time-of-flight (TOF) instruments and Orbitraps, are becoming in-
creasingly popular and are recognised for their excellent perform-
ance for such studies.  

LC conditions

For metabolomics, LC-MS can be applied to an important range 
of metabolites presenting various physico-chemical properties. The 
sample preparation is minimal and is principally critical for ensur-
ing good repeatability of the LC-MS analysis of a large number of 
samples to avoid column clogging or the irreversible adsorption of 
metabolites on the column stationary phase. Generally, no derivati-
sation is required. Compared to DIMS, however, the optimisation 
of chromatographic conditions prior to MS detection is necessary 
and the choice of the type of column eluent will influence the num-
ber of metabolites that are amenable to MS detection. To detect the 
maximum number of metabolites with various polarities, the LC-
MS separation needs to be performed using broad organic-aqueous 
reversed phase (RP) gradients using either methanol-water or ace-
tonitrile-water systems with mostly acidic modifiers such as formic 
acid to aid the ionisation and/or separation [114]. Other buffers 
might be considered according to the type of analysed compounds. 
The choice of column is strongly dependant on the polarity and the 
physicochemical properties of the metabolites that will be analysed. 
The majority of LC-MS plant metabolomics applications are per-
formed using C18 or C8 RP columns, and several generic protocols 
have been developed for plant tissue analysis using C18 gradient 
separations [50, 55]. These types of separations are slightly biased 
toward semi-polar secondary metabolites. However, within the 
same extracts, many primary metabolites such as several organic 
acids, nucleotides, amino acids, sugars and their phosphorylated 
forms, can be detected, but they usually co-elute with other com-
pounds in the injection peak [55]. 

To resolve very polar constituents, other types of stationary 
phase might be considered such as Hydrophilic Interaction Liquid 
Chromatography (HILIC) [115]. This type of partition chromatog-
raphy occupies the opposite end of the partition spectrum from RP 
liquid chromatography. Contrary to separation on RP, HILIC sepa-
rations are difficult to predict because the partition mechanism in-
volves hydrophilic partition, electrostatic interactions and hydrogen 
bonding between a polar stationary phase and a highly organic mo-
bile phase. In this case, the proportion of water is increased during 
the analytical run. HILIC might solve problems where the separa-
tion of very polar analytes is required as in the case of calystegines 
from Schizanthus species [116]. Another solution is to use ion-pair 
reagents for improving the retention in RP chromatography [117]; 
however, this might have a detrimental effect when MS detection is 
used. An evaluation of coupling RP, aqueous NP, and HILIC with 
MS for metabolomic studies of human urine has recently been con-
ducted [118]. The study showed that an extended coverage of the 
metabolome could be obtained by combining these chroma-
tographic methods. However, to our knowledge, such approaches 
have not yet been used in plant metabolomics. One practical way to 
rapidly obtain rather extensive metabolite coverage is to analyse the 
samples by both HILIC and RP chromatography. This option is 
straightforward and has been applied to the analysis of body fluids. 
The combined chromatographic approach generated two datasets 
that are unfortunately difficult to merge without the use of specific 
software programs [113]. 
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For the separation of very apolar metabolites such as lipids, ter-
penes, carotenoids or pigments, normal-phase (NP) chromatogra-
phy represents an attractive alternative; however, the solvents used 
for such separations are usually not compatible with MS. Some of 
these compounds (e.g., fatty acids or terpenes) are amenable to GC-
MS and can be analysed by NP-GC-MS. Another interesting solu-
tion is the use of supercritical fluid chromatography (SFC), which is 
compatible with MS detection, and can provide a bridge between 
GC and LC applications. An additional analytical method termed 
convergence chromatography™ has recently been introduced by 
Waters company that is based on the use of sub-2 �m particles, as 
in UHPLC, and offers an alternative option for NP chromatography 
applications.  

In metabolomic studies, access to fast chromatography methods 
that provide high separation, resolution and high repeatability is a 
key to generating high-quality datasets. In this respect, the introduc-
tion of ultra-high pressure liquid chromatography (UHPLC) sys-
tems operating at very high pressures and using sub-2 �m packing 
columns has allowed a remarkable decrease in analysis time and 
increases in peak capacity, sensitivity, and reproducibility com-
pared to conventional HPLC. This technology has rapidly been 
widely accepted by the analytical community and is being gradually 
applied to various fields of plant analysis [87], especially me-
tabolomics [119]. For this type of analysis, HPLC can be trans-
ferred to UHPLC conditions by applying gradient transfer methods 
while maintaining the same resolution [120]. By selecting the ap-
propriate column length in UHPLC, it is theoretically possible to 
increase the throughput by a factor of 9 compared to conventional 
HPLC [121]. Such fast separations are critical for performing re-
peatable high throughput metabolite fingerprinting. Because 
UHPLC provides very narrow LC peaks, the use of MS detectors 
with very fast responses such as TOF-MS is generally required. 
Currently, UHPLC-TOF-MS is recognised as being very efficient 
for studies of plant and mammalian metabolomes [122-124]. 

UHPLC-TOF-MS can also provide very detailed high-
resolution metabolite profiling. This type of analysis might be re-
quired for the separation of closely related isomers that need to be 
separated for specific studies. Gradient transfer can be applied from 
fast fingerprinting to high-resolution metabolite profiling on pooled 
samples to maintain the same separation selectivity. The HR sepa-
ration allows a precise localisation of the biomarkers of interest in 
the context of their isolation or the recording of MS or MS/MS 
spectra of fully deconvoluted LC peaks [50]. Thus, by maintaining 
strictly identical HPLC and UHPLC column lengths, it is hypo-
thetically possible to increase the theoretical plate number by a 
factor of 3 between columns packed with 5 and 1.7 �m particles 
and to reach up to 40,000 theoretical plates with a 150 mm, 1.7 �m
packing [124]. By coupling several columns together and combin-
ing high temperature for a substantial reduction of the generated 
backpressure, very high peak capacities can be obtained for plant 
metabolites [124] and peptides [125].  

In LC-MS, as is the case for DIMS, to maximise metabolome 
coverage, analyses in both PI and NI ion modes is recommended 
(see Fig. 5). According to their duty cycle frequencies, some MS 
instruments can simultaneously perform this double detection in a 
single run. With high throughput fingerprinting, however, the re-
cording of separated analyses is recommended to maintain optimal 
instrument performance. An example of metabolite fingerprinting 
and metabolite profiling of A. thaliana recorded by UHPLC-TOF-
MS is shown in (Fig. 6). Results from mass spectrometric analysis 
at low and high resolution for the fast fingerprinting and metabolite 
profiling of a given metabolite are illustrated. 

3.2.4.2. Gas Chromatography Mass Spectrometry (GC-MS)

GC-MS is the oldest but most likely one of the most robust hy-
phenated MS methods. The first application of this technique was 
published in the early 1960s [126]. Because the analytes are already 

in the gas phase during the GC separation, the hyphenation with 
MS is straightforward and ionisation methods such as EI, as de-
scribed above, can be directly applied. GC-MS has been one of the 
major analytical tools in the early development of metabolomics 
[127, 128] and currently remains a widely applied method [129]. In 
GC, the analytes are evaporated, separated and then carried through 
a column by an inert 'carrier' gas such as helium. The separation 
process of the analytes is mainly carried out between a liquid sta-
tionary phase and a gas mobile phase at an elevated temperature 
typically by applying a temperature gradient. All modern separa-
tions are carried out on capillary GC columns that provide high-
resolution separation of complex mixtures. Most of the GC columns 
are silica capillaries 10–60 m in length with internal diameters 
ranging from 100 to 500 �m, externally coated with an imide layer 
to reduce column fragility and internally coated with a 10–50 �m
thick liquid stationary phase. The stationary phase is generally ob-
tained from siloxane or a compound with a similar chemical com-
position, with varying percentages of different chemical moieties. 
DB5 (95/5 mix of methyl and phenyl groups) or DB17 (50/50 mix) 
stationary phases are generally employed in metabolomics [22]. 
Separation of the constituents is optimised by an appropriate selec-
tivity afforded by the selected column and can be modulated by 
gradient temperature [6]. 

When more physical resolution of the analytes is needed, com-
prehensive GC (GC x GC) can be employed. In GC x GC, two col-
umns are connected sequentially. Typically, the first dimension is a 
conventional column and the second dimension is a fast GC col-
umn, with a modulator positioned between the two columns. This 
type of multi-dimensional chromatography is robust and has effi-
ciently begun to be applied in metabolomics [129]. Initially, GC x 
GC-based metabolomics studies were hampered by the lack of ap-
propriate data processing, alignment, and analysis tools. Today, 
numerous algorithms are available, but the entire procedure of ob-
taining biological knowledge from raw data still awaits complete 
automation [129]. Contrary to fast LC methods, fast GC methods 
are not yet used in metabolomics, but newer developments in high 
peak capacity separations in GC-TOF-MS might soon be applied to 
the field [109]. 

In GC-MS, volatile compounds are directly monitored, while 
other metabolites of molecular mass less than approximately 300-
400 Da can be analysed after appropriate chemical derivatisation 
[22]. Various chemical derivatisation procedures are well estab-
lished for the detection of non-volatile polar or non-polar metabo-
lites [54]. For non-polar metabolites, the use of TMS enables the 
replacement of exchangeable hydrogens with trimethylsilyl groups, 
reduces intra- and intermolecular hydrogen bonding and increases 
volatility [51]. For polar analytes, a two-step process is necessary 
and before sylilation, oximation is performed to convert carbonyl 
moieties to an oxime as carbonyl groups react slowly with trimeth-
ylsilyl reagents. These powerful sample preparation steps allow the 
detection of various chemical classes including amino and organic 
acids, fatty acids and some lipids, sugars, sugar alcohols and phos-
phates, amines, amides and thiol-containing metabolites. However, 
derivatisation can introduce greater technical variability and com-
plexity to the data, as a single metabolite can produce multiple 
derivatised metabolite peaks [22]. 

In GC-MS, the most widely used ionisation technique is EI, as 
described earlier. GC-MS provides high-resolution separation and 
has considerably less ion suppression effects than LC-MS. The 
main advantage of GC-EI-MS is that it provides reproducible frag-
mentation of the molecular ion at 70 eV, which is searchable in 
widely available libraries that greatly facilitate metabolite identifi-
cation [130]. A disadvantage of EI is that many ions are related to a 
given metabolite, which complicates the mining of such data. This 
is in contrast to LC-MS where only very few features (molecular 
ion species) are linked to a given compound. These steps often 
require the deconvolution of co-eluting peaks [131] and peak 
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Fig. (6). Fast fingerprinting and high-resolution metabolite profiling of Arabidopis thaliana by UHPLC–TOFMS in NI ESI mode. This example demonstrate 
the difference in resolution that can be obtained by using a short gradient for fingerprinting on a short column (50 x 1.0 mm, 1.7 �m) or a long gradient on a 
long column (150 x 210 mm, 1.7 �m). The same selectivity can be maintain by applying a geometrical gradient transfer (adapted from [50]). The insets repre-
sent the increase in resolution that can be obtained on the isotopic pattern of a given metabolite of MW 578 (the [M-H]- is displayed) from low resolution MS 
data obtained on a quadrupole MS detector (R : 1’000) and by high resolution MS with a TOFMS detector (R :20’000). The high MS and spectral accuracy of 
the TOFMS also provide molecular formula information. 

identification for further mining of the data [132]. GC-MS data can 
also be two-dimensional, as in the case of LC-MS. 

GC-MS can be performed on a simple quadrupole instrument 
and is presently very efficient for providing relevant plant me-
tabolomic data [9, 128]. However, most of the current work is per-
formed on a GC-TOF-MS platform [131] because these platforms 
are very efficient for the profiling of primary metabolites after de-
rivatisation [133]. 

3.2.5. Combined Analytical Approaches 

Although each analytical platform presented can provide impor-
tant information on metabolite composition, no individual platform 
is sufficient to grasp the complete chemical complexity of plant 
metabolomes. Therefore, the combination of information obtained 
from the same samples with multiple experimental platforms (e.g., 
NMR, DIMS, GC-, CE- or LC-MS) is expected to extend the cov-
erage of the metabolites that characterise a biological system [134, 
135]. In general the analyses are performed independently on the 
same samples with different methods. Sometimes in MS analysis, 
PI and NI detections can be alternated during the same analytical 
run using specific ion sources. ESI and APCI modes can also be 
switched in the same manner. The use of two MS detectors for the 
detection of features from a common UHPLC separation after equal 
splitting of the eluent has also been investigated [136]. Interest-
ingly, it was shown that for the analysis of a urine sample, after 
multivariate statistical analysis, several ions were found to be 
unique to one data set or the other, a result that may have conse-
quences for biomarker discovery and interlaboratory comparisons. 
The software package used for data analysis also had an effect on 
the outcome of the statistical analysis [136]. 

Similar types of data can be compared by data fusion. Other-
wise, for analysis using orthogonal methods, e.g., NMR-MS, the 
intrinsic covariance between signal intensities of the same and re-
lated molecular fingerprints can be calculated. With such methods, 
features that are correlated in both NMR and MS datasets can be 
determined [137]. New chemometric methodologies (see below) are 
therefore needed to address the challenges that are associated with 
orthogonal or redundant data. 

A series of combined approaches has recently been used for as-
sessing key plant metabolome variations. For example, a multi-MS-
based platform (GC-MS, LC-MS, and CE-MS) approach was used 
to assesses the substantial equivalence of tomatoes over-expressing 
the taste-modifying protein miraculin [138]. The approach was 
found to have an acceptable range of variation while simultaneously 
indicating a reproducible transformation-related metabolite signa-
ture. Similarly, combined NMR and LC-MS analyses revealed the 
metabolomic changes in Salvia miltiorrhiza induced by water de-
pletion [139]. Metabolite fingerprints of ripe fruits from 50 differ-
ent tomato cultivars were recorded by both 1H-NMR and LC-
QTOF-MS. NMR and LC-MS provided complementary datasets. 
Unsupervised multivariate analysis of the NMR and LC-MS 
datasets revealed a clear segregation between cultivars. Intra-
method (NMR / NMR, LC-MS / LC-MS) and inter-method (NMR / 
LC-MS) correlation analyses were performed that enabled the an-
notation of metabolites from highly correlated metabolite signals. 
Inter-method correlation analysis produced informative and com-
plementary information for the identification of metabolites, even in 
the case of low abundance NMR signals [140]. Combined NMR 
and MS approaches with covariance analysis were also recently 
applied to search for metabolites of resistance in various Vitis culti-
vars. Protocols that propose combined DIMS and NMR approaches 
are available for high-throughput plant metabolomic analysis [141]. 

4. DATA MINING AND MULTIVARIATE DATA ANALYSIS 

Significant improvements are still required to address the ana-
lytical issues related to the global monitoring of the plant me-
tabolome, and the automated processing of large metabolomics 
datasets remains an important challenge. Indeed, raw data from any 
of the ‘omic’ fields are an eventual source of information and in 
turn a source of knowledge [142]. However, to make the leap from 
one to the next requires considerable data processing, statistical 
analysis, and suitable data storage formats [143, 144]. Thus, the 
multivariate nature of data obtained from metabolomics experi-
ments requires several steps to extract relevant information. The 
typical workflow includes the pre-processing and pre-treatment of 
the raw data, variable selection, modelling of the data and statistical 
validation. 
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The first important distinction that should be made concerns 
separative and non-separative analytical techniques. Spectral or 
non-separative methods, such as conventional NMR or DIMS, al-
low responses that correspond to a combination of multiple com-
pound contributions to be obtained (e.g., multiple compounds may 
have a common NMR chemical shift, and isomers will have the 
same m/z). Spectral or pseudo-spectral information is obtained for 
each sample, and this structure is more trivial to manage because a 
one-dimensional vector of variables is obtained. Multiple individu-
als can be summarised in a conventional data table. Consequently, 
classical chemometric tools such as PCA and PLS-based algorithms 
can be applied. The remaining difficulty is to deconvolute the dis-
criminant signal into pertinent information that can be exploited, 
e.g., unambiguous metabolite identification. Therefore, non-
separative techniques are primarily used for fingerprinting, chemo-
taxonomy or simple classification studies, including developmental 
changes. 

Although some important differences exist between the various 
hyphenated methods, such as LC-MS or GC-MS (i.e., ionisation 
mode, physicochemical properties of the detection compounds, 
etc.), the data structures could be considered similar because multi- 
or at least bi-dimensional structures are obtained. As an example, in 
LC-MS, the detected features correspond to analytes (or fragments) 
that present a certain m/z ratio at a certain retention time; a table is 
obtained for each sample with N variables (m/z value) X P retention 
time coordinates. In this case, when dealing with numerous sam-
ples, the complete data analysis generates a cube of data (N vari-
ables (m/z value) X P retention time coordinates X K individuals), 
which cannot be summarised in a conventional data table, but can 
be summarised in a (at least) three-dimensional data structure. Even 
today, some multi-way chemometric approaches, such as 
PARAFAC [145], Tucker [146] for unsupervised models and N-
way projections to latent structures (N-PLS), are available to man-
age such high-dimensional data structures, the most common 
method consists of managing a two-dimensional matrix (i.e., a ta-
ble) where the individual elements are identified in the first column 
and are defined by variables in the subsequent columns. For this 
type of structure, matricisation (also called unfolding or flattening) 
intends to reorganise the elements. Various matricisation alterna-
tives are offered to reorder this tensor, such as frontal, horizontal or 
lateral slices from a three-way data cube that can be rearranged by a 
row-wise or column-wise concatenation to be analysed by conven-
tional multivariate data analyses.  

Finally, the combination of multiple data sources will undoubt-
edly provide a more comprehensive vision of metabolomics by 
extracting common traits from different datasets obtained from the 
same plant samples. Mining of the data should provide a powerful 
way to interrogate datasets from various viewpoints based on the 
specificity of the analytical platform used for the acquisition and for 
the biological question to solve. In this context, many efforts should 
integrate various dimensionality reductions strategies.  

4.1. Non-Separative Or Spectral Methods (1D Structure) 

When managing a 1D data structure (e.g., 1D NMR of DIMS), 
the proper correspondence of the variables across multiple samples 
constitutes a critical prerequisite for ensuring the validity of the 
data treatment. The alignment of detected features in different sam-
ples aims at removing the shifts between samples for a given signal. 
Numerous experimental factors, including the temperature, pH, 
sample carryover or degradation, may lead to differences that affect 
the overall signal (fingerprint). Although NMR appears quite robust 
in this context, shifts in the m/z dimension should be corrected with 
a permanent MS calibration. Several alignment techniques have 
been developed to minimise run-to-run shifts [22, 60-62]. As previ-
ously mentioned, NMR provides 1D data where the intensity of all 
features can be directly correlated to the abundance of the given 
metabolites. Shifts related to variations in the pH may occur, and 

the use of a buffer in the solvent avoids possible fluctuations of the 
signals in the NMR spectra. The effect of different alignment meth-
ods for NMR spectra on the classification results have been recently 
discussed [147]. 

The acquisition of NMR data is extremely useful when com-
parisons are performed based on the primary constituents of a plant 
extract or when samples must be compared during long-term stud-
ies. Indeed, NMR fingerprints are very reproducible, independently 
of when the analyses are performed, contrary to MS-based ap-
proaches where group clustering is easily biased by instrumental 
noise [40]. 

Contrary to NMR, MS can be used to detect minor compounds 
among complex plant extracts, but it is prone to more variation, 
such as ion suppression. Furthermore, detection might be strongly 
altered based on the level of contamination of a given instrument. 
In MS, the measured m/z will not shift based on the nature of the 
sample being analysed. In this case, features could be detected 
based on a peak picking strategy with tolerance limits provided by 
the analyst. The limit of tolerance will be sharper if HR-MS instru-
ments are used rather than LR analysers. 

For these 1D data structures, the binning of the data constitutes 
the simplest route to proceed. Misalignments are subsequently lim-
ited to the bin boundaries as the peaks can be alternatively allocated 
to neighbouring bins [148]. However, such a process induces a 
decrease of the initial resolution, which could be detrimental for the 
interpretation of the measured signal. Additionally, the variations 
could be non-linear [149] and more sophisticated methods may be 
required. Segments of adjustable width are defined and sequentially 
aligned [150]. Therefore, the size of the segments plays a central 
role for the adequacy of the process.  

For NMR spectral data analysis, a digitalisation to numeric val-
ues for further statistical analysis has currently been achieved. In 
this procedure, the NMR spectrum is divided into a series of small 
bins (usually of 0.02 or 0.04 ppm). The sum of the signal intensities 
in each bin is then calculated. The disadvantage of equal size bin-
ning is related to peak splitting between two bins or peak collapsing 
within a bin. Therefore, the peak frequency may significantly influ-
ence the data analysis. Thanks to algorithms being able to account 
for peak positions and therefore focus on a better peak definition, it 
is possible to obtain binning where one bin covers only complete 
peaks [151].  

Scaling to the sum of the total spectrum intensity helps to 
minimise the effect of variation between samples. In the case of 
DIMS, raw data are recorded as a single file that corresponds to a 
specific sample, and hyphenated data files are composed of a set of 
mass spectra that are recorded in sequence. Because a considerable 
number of variables are measured, the datasets not only become 
larger in size but are also more complex; therefore, pre-processing 
of the data is often required.  

It has to be noted that structure elucidation is limited because 
there is no physical separation of the metabolites in spectral meth-
ods. However, with proper alignment of the features of the samples, 
the data treatment remains quite straightforward. The typical struc-
ture of the raw data obtained from a particular study with various 
samples converges to a simple data table where the values are the 
signal intensity at a given m/z or ppm. In this case, all of the con-
ventional chemometric tools are directly available for data treat-
ment (e.g., unsupervised: PCA, HCA, etc. or supervised: PLS, 
ANN, Decision trees, etc.). These tools are available in particular 
computing environments and commercial software dedicated for 
multivariate data analysis. 

4.2. Hyphenation of MS to Separation Techniques (2D Struc-
ture) 

As mentioned, the use of chromatographic techniques, such as 
LC or GC, before the MS analysis improves the resolution of fea-
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tures by adding an additional dimension for the detection. With the 
use of such methods, isomers that could not be detected may be 
resolved by the chromatographic separation. However, the hy-
phenation generates multidimensional datasets that require specific 
algorithms to be deconvoluted. 

All bi-dimensional datasets require specific data processing, 
and several steps are required to render the data meaningful and to 
obtain properly aligned features detected across multiple samples. 
Therefore, data processing is a crucial component of the me-
tabolomics approach and is required to extract relevant signals from 
the raw data before data mining and interpretation [152]. Data proc-
essing includes data format conversion, noise filtering, normalisa-
tion, chromatographic alignment, peak detection, deconvolution and 
integration. A schematic that summarises how to convert and proc-
ess 1D and 2D data is presented in (Fig. 7). 

The most common objective when managing an intrinsic 2D 
data structure is to first convert the initial data into a vector for each 
sample. This step (from 2D to 1D) allows an information-rich pro-
file to be obtained that is suitable for pattern recognition and clus-
tering. This step could be achieved by collapsing or signal detection 
(e.g., peak picking). For the former, two methods for dimensional-
ity reduction are available, namely collapsing the signal axis or 
collapsing the time axis. As an example, raw LC-MS data could be 
collapsed into spectrometric profiles, (i.e., total mass spectra: TMS) 
where a fingerprint characterises each sample and only the MS 
information is retained. This approach differs from DIMS because 
sample infusion could lead to the ionisation suppression of several 
compounds when complex samples are directly introduced into the 
MS. When applying the time collapsing of initial 2D data, the 
chromatographic step performed during the data acquisition de-
creases the matrix effect by reducing the number of competing 
analytes that simultaneously enter the MS ion source, which leads 
to lower detection limits. Therefore, the obtained TMS is generally 
of higher quality for data treatment [153, 154]. 

The proper correspondence of the variables across multiple 
samples constitutes the same critical prerequisite to ensure the va-
lidity of further data analysis. The alignment of features detected in 
different samples aims at the removal of shifts between samples for 
a given compound and is similar as that achieved in the intrinsic 1D 
data structure. The primary difference remains that other alignment 
strategies should be employed on the raw data. As an example, 
several warping methods have been developed [155-157], and so-
phisticated algorithms have been proposed based on the experience 
of performing chromatography with conventional detection, such as 
correlation optimised warping (COW) [158] and dynamic time 
warping (DTW) [159]. Note that such iterative alignment proce-
dures may be prohibitively time consuming when dealing with large 
datasets. Other alternatives exist, such as kernel density [148], 
component-resolving algorithms [160], progressive clustering [161] 
etc. After peak alignment, gap filling is usually applied to fill miss-
ing values when peaks could not be detected in all samples. This 
procedure avoids the inclusion of many zero values that would have 
detrimental effects on further data modelling. 

The signal detection can be performed through the selection of 
signals that correspond to local maxima or fitting more elaborate 
mathematical models, e.g., Gaussian distributions. The apex and the 
inflection points are used for area integration [162]. Constraints on 
the peak shapes and criteria of minimal intensity, area or signal-to-
noise are usually applied to distinguish true peaks from noise. Sev-
eral parameters generally need to be adjusted to match the charac-
teristics of the data (NMR or MS-based acquisition).  

After this procedure, the information-rich profile is constituted 
for a sample by the detection of features that correspond to a signal 
intensity observed at two coordinates (e.g., m/z – time, ppm – time, 
etc.).  

4.3. Data Pre-Processing 

As shown in (Fig. 7), the standard output of pre-processed raw 
data from a complete metabolomics study would appear as an 
aligned data table where each row corresponds to a particular sam-
ple that is described by a large series of columns, which correspond 
to the variables. The number and the nature of the variables repre-
sent a critical issue with respect to data modelling, specifically 
when dealing with multivariate data of high dimensionality where 
biologically relevant hypotheses are harder to find. Suitable vari-
able selection and scaling methods are selected according to the 
characteristics of each analytical platform and/or the biological 
phenomena. 
4.3.1. Variable Selection 

Because the prediction accuracy is often decreased by highly 
correlated or irrelevant variables, supervised models can be im-
proved by a prior variable selection [163]. Several other advantages 
could be obtained, including a decrease in computational time. 

Variable selection is generally achieved using a two-step proce-
dure, i.e., the generation of variable subsets and the estimation of 
their respective predictive or clustering ability. Individual variables 
or groups of potentially interacting features can be selected accord-
ing to various criteria, such as redundancy removal or biological 
knowledge integration. Note that an individual evaluation is unable 
to account for putative interactions between variables; therefore, 
synergistic effects may be missed or lost. Data redundancy and 
correlations are undesirable and often detrimental to modelling. 
Computing correlations between variables constitutes the simplest 
method to evaluate redundancy.  

The selection within a group of only one of the correlated fea-
tures or the construction of new variables starting from the original 
correlated variables (variable construction/ transformation) could 
lead to a more compact and interpretable image of the study [164]. 
However, this selection should be handled with caution in me-
tabolomics because redundant signals may also be informative to 
evaluate metabolic pathways or evidence networks of interrelated 
compounds [165]. 
4.3.2 Variable Normalisation 

Normalisation strategies aim at reducing the effects of undesir-
able variability sources or systematic bias and to ensure the reliabil-
ity of measurements and comparisons between samples over the 
entire dynamic range, from highly concentrated to low abundance 
metabolites. 

Two main categories can be defined, namely methods dedicated 
to correct variations (i) between samples and (ii) between individual 
metabolites. 

The former intends to reduce variations between samples, 
which can be due to analytical noise, experimental bias, biological 
variability or confounding factors (e.g., nutrition or medication). 
These procedures allow increasing differences between experimen-
tal groups (e.g., case vs. control) to render biological signals easily 
discernible. Such methods include the unit norm (scaling to the sum 
of the total spectrum), median intensities normalisation [166] or 
more sophisticated data transformation methods such as the cubic 
spline [167] and quantile normalisation [168].  

Because many factors could increase data variability in biologic 
studies, including the intrinsic biological differences of the studied 
samples or the overall analytical variance (e.g., sample preparation, 
instrumentation, etc.), it was recently proposed that quality control 
samples (QC) should be included in each data acquisition set [169]. 
QCs are generally composed of a representative sample, which 
could be a pool of multiple individuals that present similar charac-
teristics. While inter-individual differences are intrinsic to biologi-
cal phenomena, undesirable variability and bias may also be added 
during the data processing. Therefore, numerous steps are crucial
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Fig. (7). Sample data table construction from 1D and 2D data. On left side, after relatively simple data treatment, e.g. alignment and binning, monodimensional 
data (1D-Data) will give a table of results that can be analysed by conventional multivariate data analyses. On the right side, specific pre-treatment for bi-
dimensional data (2D-Data) are achieved. In this context, feature extraction is often mandatory (see text). 

for the appropriate processing of these datasets to distinguish rele-
vant biomarkers from the mass of recorded signals. QC samples are 
evaluated within the complete data set as an image of the global 
variability of the measurement system. Thanks to conventional 
statistics (relative standard deviation, student’s t test, etc.) or multi-
variate data analyses such as PCA, the studied samples could be 
evaluated in terms of variability compared to QCs. The latter could 
present a relatively low RSD to observe a particular phenomenon in 
the data set. An initial overview of the quality of the run was ob-
tained by the PCA of the complete data set, including all of the QC 
injections (i.e., including the initial conditioning injections). Based 
on the hypothesis described above, the closer the QC samples ap-
pear on the scores plot, the more reproducible the performance of 
the analytical system should be [170]. Because the biological ef-
fects related to concentration changes could vary greatly from one 
metabolite to another, the concentration variability of individual 
metabolites can fluctuate. This variation related to individual me-
tabolites, namely heteroscedasticity, could be detrimental for ob-
serving a particular situation [171].  

While a fine concentration tuning may be required for a given 
metabolite, drastic modifications can have very little phenotypic 
impact for others. Due to analytical reasons, low concentrations of 
minor metabolites are often more subject to measurement errors 
than high abundance molecules. It has often been demonstrated that 
compounds present at lower concentrations are more difficult to 
measure and consequently more altered by the analytical noise. 
Furthermore, highly abundant metabolites are not always the most 
related to the most biologically relevant phenomena under study. 
To normalise the variances of the different metabolites and make 
them comparable, scaling procedures are applied.  

Different scaling methods, mainly, Unit Variance and Pareto 
could be performed. Unit Variance (UV) -scaling is the most stan-
dard method while Pareto-scaling is more often used with MS data, 
but also interesting in some case for NMR-based experiments. In 
UV scaling, each variable is weighted with the inverse of its stan-

dard deviation (1/SD). Each variable then has equal (unit) variance. 
Pareto is a softer scaling technique that increases the importance of 
low intensity ions without significant amplification of noise by 
weighting each variable with the inverse of the square root of its 
standard deviation (1/sqrt(SD)). Although UV scaling 
may emphasize analytical noise by giving importance to low inten-
sity signals, some information may be lost due to Pareto scaling. 
Therefore, scaling is another important part of data preprocess-
ing and should be carried out carefully.  

Some reports suggest that such scaling approaches may deterio-
rate the signal-to-noise ratio leading to impaired data [172], and 
other strategies such as variance stabilisation normalisation have 
been proposed in the context of microarray data analysis as valu-
able alternatives [173]. Additionally, a mathematical transformation 
can be helpful to correct skewed data before modelling. The log 
function constitutes a well-known transformation that is applied to 
correct heteroscedasticity [174].  

4.4. Data Mining 

To extract the relevant information from the vast amount of 
data generated in metabolomics datasets, data mining in me-
tabolomics constitute a great challenge from a statistical point of 
view, [152]. The choice of the data analysis strategy significantly 
depends on the questions that are asked. While a very few, highly 
reliable metabolites can be sufficient for diagnostic purposes (as in 
the case of disease evaluation), an extended set of compounds may 
be desired when a biochemical network is under examination. The 
choice of the most appropriate model for a given dataset therefore 
constitutes an important issue.  

Univariate statistical tests, such as Student’s t-test, initially used 
to identify the relevant variables remains of limited interest to pro-
vide trends and patterns among samples or relevant biomarkers 
within large metabolomics datasets. Therefore, in the last few years, 
considerable opportunities to increase the understanding of biologi-
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cal phenomena through the use of multivariate data mining methods 
with respect to their strengths and applicability have been observed. 
Numerous algorithms, generic or dedicated to a particular data 
structure, have been applied in this context, and an overview of the 
current chemometric possibilities is out of the scope of the present 
review.  

As shown in (Fig. 8), the data mining workflow begins with an 
unsupervised analysis to provide the first contact with the dataset. 
This step is useful to assess the samples’ distribution and detect 
potential outliers. Unsupervised statistical tools facilitate the first 
understanding of the relationship between the samples. The models 
can also provide information about the variables that are responsi-
ble for these relationships. Visualisation tools are mandatory to 
assess the interpretability and the usefulness of the model with re-
spect to the data at hand. Some of the most common methods are 
Principal Component Analysis (PCA), Hierarchical Cluster Analy-
sis (HCA) and other agglomerative solutions, such as the K-means. 
In most of the cases, the next step consists of applying supervised 
methods to take advantage of prior information for the analysis of a 
set of observations. This information could be quantitative or quali-
tative in the context of classification. Several techniques have been 
developed for that purpose, originating from the statistical, 
chemometric or machine learning background. As previously men-
tioned, a discussion about the pros and cons of each supervised 
algorithms cannot be performed here, but note that over several 
years, partial least squares (PLS)-based methods have proven their 
usefulness in various applications. When a class attribute has to be 
predicted (e.g., known groups of observations), the PLS discrimi-
nant analysis (PLS-DA) has been demonstrated to be a potent tool 
for the classification of data from metabolomics experiments [175]. 
The orthogonal PLS algorithm (O-PLS) [176] and O2-PLS [177] 
have also recently been proposed to allow an easier interpretation of 
the models by separating the Y-predictive variability from the or-
thogonal one. 

Other approaches, such as Decision Trees, Kernel Methods, Ar-
tificial Neural Network (ANN), and support vector machines 
(SVMs) could be applied as well as exploratory analysis, variable 
selection, and biomarkers discovery or classification issues in a 
supervised manner [178]. 

4.5. Software  

Several commercially available or free software packages that 
have implemented specific parts or the complete metabolomics data 
processing procedure have been available for several years, and the 
relevant reviews are regularly updated. The use of software is more 
or less user-friendly, depending on the implementation of a graphi-
cal or a command line user interface. For MS based acquisition, 
free bioinformatics tools include MZmine [179], XCMS [148], 
MetAlign [180], MSFACTs [181], TagFinder [182], MET-IDEA 
[183], MathDAMP [184], msInspect [185], OpenMS [186] and 
MetaboliteDetector [187].  

For NMR based approaches, a very recent review has compared 
several commercial or open source solutions for the development 
and analysis of the NMR metabolomics data set, including NMR 
spectra pre-processing and the primary chemometric methods used 
to analyse this type of data. Because not all of the processing or 
analysis steps are included in all of the packages, a useful compari-
son list has been reported [188].  

4.6. Combined Approaches 

Modern analytical platforms have proven their worth by provid-
ing insight into complex networks of metabolites. However, nu-
merous authors have demonstrated that a single analytical method is 
not often sufficient to grasp the chemical complexity of plant me-
tabolomes. Therefore, the combination of information obtained 
from the same samples with multiple experimental platforms (e.g., 

NMR, GC-, CE- or LC-MS) is expected to extend the coverage of 
the metabolites that characterise a biological system [189]. The 
original chemometric methodologies are mandatory for coping with 
the challenges associated with the fusion, the integration and the 
comparison of data generated using different, hopefully comple-
mentary, analytical techniques or data acquisition modes.  

The first solution consists of processing and independently ana-
lysing the different datasets, manually comparing the results using 
high-level data integration and attempting to establish a relationship 
between the discriminant features [190]. However, such an ap-
proach is unable to uncover the possible interrelations between 
features or signals that are measured independently. Furthermore, a 
detrimental redundancy can occur as some classes of analytes may 
be well detected on the different platforms. Therefore, their related 
signals will have a greater impact on the subsequent models.  

Computing correlation profiles between the two sets of vari-
ables constitutes another simple method for evaluating the relation-
ship between multiple datasets. On the basis that the same samples 
are characterised by different data sources, the sample mode consti-
tutes a common dimension across the tables, i.e., the matrices pos-
sess the same number of rows. This simple approach aims to corre-
late relevant metabolites highlighted in one of the data tables with 
related signals in the other matrices based on correlations, even if 
these signals would not have been detected when analysing the 
other tables separately. This approach can be particularly well 
suited to searching for biomarker candidates [134]. However, corre-
lation does not necessarily imply causation. The statistical het-
erospectroscopy (SHY) method was proposed to combine NMR 
and LC-MS datasets based on the visual analysis of Pearson corre-
lation profiles associated with highly statistically significant indices 
[191]. A similar approach was recently applied to associate data 
obtained with 1H-NMR and GC-MS in the context of plant me-
tabolomics [192]. 

Because an independent analysis of an individual dataset may 
be limited, other solutions are offered to integrate information from 
multiple sources, such as the horizontal concatenation of data ma-
trices. Such data fusion is performed by considering variables of 
different origins to build a summary table such that multivariate 
classical methods, either unsupervised, e.g., PCA, or supervised, 
e.g., PLS-DA, can be applied to the merged data matrix [193]. Of-
ten, this approach aggravates the curse of dimensionality because it 
generates data structures with a prohibitive number of variables. In 
this context, applying variable selection or dimensionality reduction 
before concatenation can be useful to restrain the size of each data 
table [194].  

Finally, more advanced chemometric methods, including multi-
block and hierarchical component models, are attractive solutions 
for the simultaneous analysis of multiple data tables [195]. These 
data analyses tend to provide a simultaneous overall view of the 
major trends common to all tables (consensus status combining the 
information contained in all tables) but also highlight differences 
between tables and or individuals. These approaches were recently 
used to model multiple data sets in the context of microbial fermen-
tation [195] and rat toxicity [196] but are still sparsely applied in 
the context of plant metabolomics [197]. 

5. BIOMARKER IDENTIFICATION  

As discussed, with the current technology, metabolite finger-
prints can be obtained in a very efficient and high throughput man-
ner. In the entire metabolomics process, however, one of the main 
bottlenecks is the identification of biomarkers. This is even more 
challenging with plants because secondary metabolites are often 
species-specific and comprehensive freely accessible widespread 
databases do not exist. Biomarker identification plays a central role 
because the biomarker identity is mandatory to convert me-
tabolomic results into biological knowledge.  
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Fig. (8). From data table to information, examples of data mining outputs (OSC : Orthogonal Signal Correction, PCA : Principal Component Analysis, HCA : 
Hierarchical Cluster Analysis, O-PLS-DA : Orthogonal Partial Least Squares Discriminant Analysis, ANN artificial neural networks). 

A number of guidelines are available regarding criteria to de-
fine the chemical identity of a metabolite [198, 199]. For high 
specificity, two orthogonal properties should be employed. In hy-
phenated MS methods for example, retention time depicts a physi-
cal property characteristic (volatility, hydrophobicity) and accurate 
mass or fragmentation mass spectra depict a characteristic of the 
structure of the metabolite [22].

5.1. Identification by NMR 

In general, primary metabolites such as sugars, amino acids and 
organic acids are abundant and major metabolites that are found in 
plants. The signals of most of amino acids, except aromatic amino 
acids (phenylalanine, tyrosine and tryptophan), appear in the � 2.0-
1.0 region of 1H NMR spectra. Organic acids are found in the � 3.5-
2.0 region, while the signals of sugars appear in the � 5.5-3.0 re-
gion. The signals of phenolic compounds are shifted more down-
field to � 6.0 (� 8.0-6.0). Signals can be identified by comparing 
them with reference data from the literature or in-house libraries of 
reference compounds. Most of the primary metabolites and simple 
secondary metabolites (e.g., phenolics) can be identified in this 
way. The identification of common metabolites that are found in 
plants has been well documented in several noteworthy reviews 
[40, 200, 201]. The different main regions that can be characterised 
directly from a 1H-NMR spectrum are illustrated in (Fig. 9) by the 
analysis of a direct methanol-d4 /D2O grapevine leaf extract [39]. 
NMR data of series of common phenolics (phenylpropanoids, fla-
vonoids) were listed in (Tables 2-5).  

The more difficult and time-consuming part of the analysis is 
the identification of secondary metabolites that are present at very 
low concentrations or have complex structures. Diverse 2D NMR 
spectroscopy methods are necessary to identify and confirm their 
structures. 

As discussed for the 2D-NMR experiments, 2D-1H-1H-J-
resolved spectra are very useful tools to identify signals in the con-
gested area of NMR fingerprints. They provide additional informa-

tion including spin-spin coupling constants, together with chemical 
shifts. For example, when two signals are close to each other, it is 
unclear from the 1H-NMR spectra whether they are doublets from 
one molecule or two singlets from the same or different molecules. 
The additional information of the spin-spin coupling in the J-
resolved spectrum can solve this issue [69]. Using their typical 
coupling constants (J value) together with chemical shifts, some 
metabolites can be easily identified from complex 1H-NMR spectra. 
For instance, H-8 of phenylpropanoids are well separated by char-
acteristic coupling constants (15-16 Hz) in the 2D-J-resolved spec-
tra from H-6 and H-8 of 5,7-dihydroxy flavonoids (2-3 Hz) in the �
6.0 – � 7.0 region [202]. 

Conversely, 2D NMR correlations between protons (1H-1H) or 
proton-carbons (1H-13C) can be useful to confirm whether the ob-
served signals are derived from a single biomarker in an extract. A 
typical proton homonuclear experiment is correlation spectroscopy 
(COSY) that shows which signals in a 1H-NMR have mutual spin-
spin couplings. The resulting spectrum has the conventional 1D 
NMR spectrum along the diagonal cross-peaks at chemical shifts 
that correspond to pairs of coupled nuclei. In general, protons 
within three bonds are well-correlated in the COSY spectrum, but 
in sp2 spin systems such as those found in olefinic and phenolic 
compounds, even the correlation beyond three bonds is readily 
detected. From the complex phenolic region (� 6.0 – � 8.5), flavon-
oids such as quercetin analogues are well identified in grape (Vitis 
vinifera) leaves using the proton-proton correlation pattern obtained 
from COSY spectra [203]. 

Another powerful 2D correlation technique is total correlation 
spectroscopy (TOCSY), which provides information such as the 
unbroken chains of coupled protons in the same molecule. For in-
stance, the signals of sugars are mostly present in the crowded area 
(� 3.0-4.0), except for the anomeric proton, which usually appears 
around � 5.5-4.5. Once the anomeric proton of sugars is defined, the 
rest of the signals can be readily assigned using correlation in 
TOCSY spectrum. The correlations are detected largely based on 
the spin-lock duration and the adjustable parameters of the TOCSY
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Fig. (9). 1H-NMR spectrum of grapevine (‘Regent’ cultivar analyzed after 48 hours of pathogen inoculation). 1H NMR can be divided into three distinct re-
gions: amino acid (� 2.5-0.0), sugar (� 5.0-3.0) and aromatic (� 8.5-5.5) region. Numbers indicate assignment of major signals to the metabolites. 0: TMSP 
(internal standard), 1: leucine, 2: valine, 3: threonine, 4: alanine, 5: glutamate, 6: proline and methionine, 7: glutamine, 8: malate, 9: quercetin glucoside, 10: 
caffeoyl moiety, 11: feruloyl moiety, 12: myricetin, 13: Tyrosine. 14: sucrose, 15: glucose (Modified from [39]). 

experiment. Thus, the results are not dependent on the magnitude of 
the spin-spin couplings but rather on the duration of the spin-lock 
field [204, 205]. The longer the spin-lock period is applied, the 
further the magnetisation will be transferred down a chain of cou-
pled nuclei. A short duration (less than 30 msec) gives a result that 
is similar to a COSY experiment, but longer times (typically in the 
range of 50 – 200 msec) result in the desired total correlation [204, 
205]. For example, more correlations between signals in the su-
crose, �-glucose, and �-glucose spectra are detected with longer 
duration.  

An example of the 1H-1H J-resolved and the 1H-1H COSY spec-
tra of grapevine leaf extract are illustrated in (Fig. 10). As shown, 
the characteristic signals of various phenylpropanoids were as-
signed in the J-resolved experiment and their correlations are high-
lighted in the corresponding COSY 2D plot [39]. 

Pairs of 2D NMR spectra are often manually compared. How-
ever, a metabolomics approach involving the comparison of multi-
ple 2DNMR statistical analysis methods for 2D NMR spectra has 
been recently developed. The hierarchical alignment of 2D spectra 
enabled pattern recognition of the exudates from two nematode 
species that were studied by 2D TOCSY NMR and chemical differ-
ences between the two species were efficiently assessed [206]. 

A direct correlation between carbons and protons can be de-
tected by heteronuclear multiple quantum coherence (HMQC) or 
heteronuclear single quantum coherence (HSQC) [63]. HSQC gives 
better sensitivity than HMQC but requires phase correction. In 
HMQC and HSQC spectra any carbon that is directly attached to a 
proton is detected. Consequently, the chemical shift of a 13C con-
nected to a specific proton can be obtained. Recently, HSQC has 
been shown to be particularly useful in the metabolomics field. 
Indeed, the presence of specific metabolites within an extract was 
clearly distinguished by comparing two HSQC spectra – spectra of 
mixtures of known reference compounds and spectra of the extracts 
[207]. In addition, when comparing the HSQC spectra of interest, 
differences in the spectra of two similar susceptible/resistant plants 
species, Ilex paraquariensis and Ilex dumosa [208], were readily 
discernible. The cross-peaks corresponding to the main differences 

were linked to biomarkers that are characteristic of these specific 
plants. 

Long-range correlations (two and three bonds) between carbons 
and protons can be observed by heteronuclear multiple bond corre-
lation (HMBC) spectra [63]. This is an extremely powerful tool for 
structure elucidation as carbon-carbon correlations can be indirectly 
obtained with the aid of HMQC or HSQC. In addition, correlations 
between quaternary carbons such as carboxylic acid and nearby 
protons can be observed in the spectra. The long-range couplings in 
HMBC spectra can provide information on the connectivity be-
tween two moieties that are connected only by quaternary carbons 
or hetero atoms (e.g., O-glycosides). In metabolomic studies for 
example, the correlation between the anomeric proton of the glu-
cose moiety and the carbon of C=N in glucosinolates is quite char-
acteristic and were easily detected in the HMBC spectrum of Bras-
sica rapa [209]. 

Using diverse combinations of NMR techniques, many secon-
dary metabolites have been identified from crude extracts. Charac-
teristics of 1H NMR signals of several common secondary metabo-
lites, particularly phenylpropanoids and flavonoids, are listed in 
(Tables 2-5).  

Tables 2-5. Summary of chemical shifts used for NMR identifi-
cation. 

The use of 2D NMR provides an efficient means of enhancing 
the resolution of features in metabolomics and provides additional 
key information for structure determination. However, it should be 
taken into account that compared to 1H NMR, the throughput is 
reduced because1H-13C correlation experiments need to be con-
ducted for longer periods of time (several hours). The detection of 
1H-13C is less sensitive than 1H-NMR but more sensitive than direct 
13C-NMR because the 2D NMR experiment is conducted by indi-
rect detection of the nucleus with the highest gamma value, which 
in this case is 1H. 

The role of 1D and 2D-NMR in comprehensive NMR-based 
metabolomic approaches for fingerprinting and metabolite identifi-
cation are summarised schematically in (Fig. 11).
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Table 2. 1H Chemical Shifts (ppm) and Coupling Constants (Hz) of Common Plant Phenylpropanoids (Phenolic Moiety). 

H
Phenylpropanoids 

2 3 4 5 6 
solvent 

7.59 (m) 7.44 (m) 7.44 (m) 7.44 (m) 7.59 (m) 1 
cinnamic acid (1)

7.57 (m) 7.39 (m) 7.39 (m) 7.39 (m) 7.57 (m) 2 

caffeic acid (2) 7.12 (d, 2.0) - - 6.88 (d, 8.3) 7.03 (dd, 8.3, 2.0) 1 

o-coumaric acid (3) - 6.92 (dd, 8.0, 1.5) 7.28 (td, 8.0, 1.5) 6.93 (td, 8.0, 1.5) 7.55 (dd, 8.0, 1.5) 1 

m-coumaric acid (4) 7.07 (brt, 2.0) - 6.93 (brdd, 8, 1.6) 7.30 (t, 8.0) 7.13 (brd, 7.5) 1 

p-coumaric acid (5) 7.50 (d, 8.6) 3 6.89 (d, 8.6) 3 - 6.89 (d, 8.6) 3 7.50 (d, 8.6) 3 1 

ferulic acid (6) 7.19 (d, 1.9) - - 6.89 (d, 8.2) 7.10 (dd, 8.2, 1.9) 1 

ferulic acid-4-O-glucoside (7) 7.28 (d, 1.5) - - 7.17 (d, 8.5) 7.20 (dd, 8.5, 1.5) 1 

sinapic acid (8) 6.93 (s) - - - 6.93 (s) 1 

sinapic acid -4-O-glucoside (9) 6.98 (s) - - - 6.98 (s) 1

coniferyl alcohol (10) 7.08 (brs) - - 6.83 (d, 8.0) 6.93 (dd, 8.5, 1.5) 1 

sinapyl alcohol (11) 6.77 (s) - - - 6.77 (s) 1 

coniferin (12) 7.16 (d, 2.0) - - 7.13 (d, 8.0) 7.04 (dd, 8.0, 2.0) 1 

syringin (13) 6.83 (s) - - - 6.83 (s) 1 

6.82 (d, 2.0) - - 6.80 (d, 8.0) 6.68 (dd, 8.0, 2.0) 1 
eugenol (14)

6.73 (d, 2.0)   6.69 (d, 8.0) 6.60 (dd, 8.0, 2.0) 2 

6.99 (d, 1.5) - - 6.80 (d, 8.0) 6.84 (dd, 8.5, 2.0) 1 
isoeugenol (15)

6.91 (d, 2.0) - - 6.67 (d, 8.0) 6.74 (dd, 8.0, 2.0) 2 

p-dihydrocoumaric acid (16) 7.09 (d, 8.6) 3 6.78 (d, 8.6) 3 - 6.78 (d, 8.6) 3 7.09 (d, 8.6) 3 1 

chlorogenic acid (17) 7.12 (d, 2.1) - - 6.87 (d, 8.4) 7.01 (dd, 8.4, 2.0) 1 

3-O-caffeoyl quinic acid (18) 7.15 (d, 2.0) - - 6.88(d, 8.4) 7.06 (dd, 8.4, 2.0) 1 

4-O-caffeoyl quinic acid (19) 7.16 (d, 2.0) - - 6.89 (d, 8.4) 7.06 (dd, 8.4, 2.0) 1 

1-O-
caffeoyl 6.92 (d, 2.0) - - 6.67 (d, 8.0) 6.75 (dd, 8.0, 2.0) 

cynarin (20)
3-O-

caffeoyl 6.82 (d, 2.0) - - 6.52 (d, 8.0) 6.61 (dd, 8.0, 2.0) 

1

3-O-
caffeoyl 7.19 (d, 2.0) - - 6.90 (d, 8.0) 7.10 (dd, 8.0, 2.0) 

3,5-dicaffeoyl quinic acid (21)
5-O-

caffeoyl 7.16 (d, 2.0) - - 6.89 (d, 8.0) 7.08 (dd, 8.0, 2.0) 

1

cichoric acid (22)4 7.08 (d, 1.5) - - 6.78 (d, 8.0) 6.98 (dd, 8.0, 1.5) 2 

caffeoyl 7.11 (d, 2.0) - - 6.86 (d, 8.5) 7.02 (dd, 8.5, 2.0) 
rosmarinic acid (23) 8-hydroxy dihy-

drocaffeoyl 6.82 (d, 2.0) - - 6.77 (d, 8.0) 6.70 (dd, 8.0, 2.0) 
1

1CH3OH-d4-KH2PO4 buffer in D2O (pH 6.0), calibrated to TSP at � 0.00, 2 CH3OH-d4 calibrated to residual solvent at � 3.30, 3 multiplet but seemingly doublet, 4 The same chemical shifts and coupling constants of 
two caffeoyl moieties. 

5.2. MS-Based Identification 

As discussed, one of the main pieces of information that can be 
obtained from MS is the molecular weight (MW) of the biomarkers. 
In approaches such as DIMS or LC-MS, soft ionisation methods are 
used that generate various molecular ion species. One of the first 
tasks in metabolite identification is to identify the MW of a given 
biomarker. This task is not straightforward for an unknown com-
pound because different adducts, dimers or oligomers may be pre-
sent in the MS spectra. An example of such spectra is illustrated in 
(Fig. 6). Each ionisation mode (PI or NI) generates a defined type 
of adducts, and based on the relationships between molecular ion 
species and comparison of the PI and NI spectra obtained for a 
given peak, the MW can be unambiguously deduced [210]. With 
LR-MS approaches, the nominal mass that is deduced is a first ele-
ment that can be used for database searches. However, this informa-
tion is extremely limited and a large number of structures will 

match a given MW. When HR-MS instruments are used, the MW 
can be determined with high accuracy. Currently, most HR-MS 
instruments routinely provide mass accuracy < 5 ppm and this can 
reach 1 ppm or less on high-end FT-ICR-MS [85]. The accurate 
mass data together with high spectral accuracy (isotopic pattern 
determination) provide key information for molecular formula as-
signment. However, with < 5 ppm mass accuracy, the unambiguous 
determination of the molecular formula of a biomarker is difficult, 
especially for high MW (> 500 Da) compounds or for those that 
contain atoms other than CHO. To reduce the possibilities of mo-
lecular formula determination, different successive filters, known as 
heuristic filters [211], can be applied. This filtering process includes 
the following steps: (1) restrictions for the number of elements; (2) 
LEWIS and SENIOR chemical rules; (3) isotopic patterns; (4) hy-
drogen/carbon ratios; (5) elemental ratio of nitrogen, oxygen, phos-
phor, and sulphur versus carbon; and (6) element ratio probabilities. 
Molecular formulas identified in this way are usually determined
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Table 3. 1H Chemical Shifts (ppm) and Coupling Constants (Hz) of Common Plant Phenylpropanoids (Aliphatic Moiety). 

H
Phenylpropanoids 

7 8 9 others 
solvent 

7.65 (d, 16.0) 6.50 (d, 16.0) - - 1

cinnamic acid (1)
7.66 (d, 16.0) 6.47 (d, 16.0) - - 2

caffeic acid (2) 7.52 (d, 15.9) 6.29 (d, 15.9) - - 1

o-coumaric acid (3) 7.88 (d, 16.0) 6.55 (d, 16.0) - - 1

m-coumaric acid (4) 7.59 (d, 16.0) 6.46 (d, 16.0) - - 1

p-coumaric acid (5) 7.59 (d, 15.9) 6.33 (d, 15.9) - - 1

ferulic acid (6) 7.56 (d, 15.9) 6.34 (d, 15.9) - 3.89 (s, OCH3) 1

ferulic acid-4-O-glucoside (7) 7.48 (d, 16.0) 6.42 (d, 15.5) - 
5.06 (d, 7.5)3

3.91 (s, OCH3)
1

sinapic acid (8) 7.48 (d, 16.0) 6.37 (d, 16.0) - 3.88 (s, OCH3) 1

sinapic acid -4-O-glucoside (9) 7.32 (d, 16.0) 6.47 (d, 16.0) - 
4.99 (d, 7.5)3

3.90 (s, OCH3)
1

coniferyl alcohol (10) 6.55 (brd, 16.0) 6.25 (dt, 15.5, 6.0) 4.23(dd, 6.0, 1.0) 3.88 (s, OCH3) 1

sinapyl alcohol (11) 6.54 (brd, 16.0) 6.28 (dt, 16.0, 6.0) 4.24 (dd, 5.5, 1.0) 3.87 (s, OCH3) 1

coniferin (12) 6.59 (brd, 16.0) 6.34 (dt, 16.0, 5.5) 4.25 (dd, 5.5, 1.0) 
5.02 (d, 8.0)3

3.90 (s, OCH3)
1

syringin (13) 6.58 (brd, 16.0) 6.38 (dt, 16.0, 5.5) 4.26 (dd, 6.0, 1.5) 
4.94 (d, 7.5)3

3.88 (s, OCH3)
1

3.30 (d, 7.0) 
5.97 (ddt, 17.0, 10.0, 

6.5) 
5.06 (dq, 17.0, 2.0) 

5.05 (dm, 10.0) 3.84 (s, OCH3) 1

eugenol (14)

3.27 (d, 6.5) 
5.93 (ddt, 17.0, 10.0, 

6.5) 
5.03 (dq, 17.0, 2.0) 

4.99 (dm, 10.0) 3.81 (s, OCH3) 2

6.36 (dd, 15.5, 1.5) 6.16 (dq, 15.5, 6.5) 1.84 (dd, 6.5, 1.5) 3.86 (s, OCH3) 1

isoeugenol (15)
6.29 (dd, 15.5, 1.5) 6.06 (dq, 15.5, 6.5) 1.82 (dd, 6.5, 1.5) 3.84 (s, OCH3) 2

p-dihydrocoumaric acid (16) 2.82 (t, 7.5) 2.59 (t, 7.5) - - 1

chlorogenic acid (17) 7.58 (d, 15.9) 6.33 (d, 15.9) - 
5.34 (ddd, 10.8, 9.8, 

5.0)4
1

3-O-caffeoyl quinic acid (18) 7.61 (d, 15.9) 6.41 (d, 15.9) - 5.37 (dt, 5.6, 3.1)5 1

4-O-caffeoyl quinic acid (19) 7.66 (d, 15.9) 6.44 (d, 15.9) - 4.89 (dd, 8.3, 3.3)6 1

1-O-caffeoyl 7.39 (d, 16.0) 6.26 (d, 16.0) - - 
cynarin (20)

3-O-caffeoyl 7.43 (d, 16.0) 6.11 (d, 16.0) - 5.32 (dt, 3.6, 3.2) 
1

3-O-caffeoyl 7.65 (d, 16.0) 6.50 (d, 16.0) - 5.43 (dt, 3.5, 3.0)5

3,5-dicaffeoyl quinic acid 
(21) 5-O-caffeoyl 7.64 (d, 16.0) 6.39 (d, 15.6) - 

5.49 (ddd, 11.6, 10.3, 
5.0)4

1

cichoric acid (22)7 7.65 (d, 16.0) 6.37 (d, 16.0) - 5.79 (s)8 2

caffeoyl 7.52 (d, 16.0) 6.30 (d, 16.0) - - 
rosmarinic acid (23) 8-

hydroxydihydrocaffeoyl 
3.11 (dd, 14.0, 3.5) 
2.95 (dd, 14.5, 10.0) 5.06 (dd, 9.5, 3.5) - - 

1

1CH3OH-d4-KH2PO4 buffer in D2O (pH 6.0), calibrated to TSP at � 0.00, 2 CH3OH-d4 calibrated to residual solvent at � 3.30, 3 H-1 of �-glucose, 4 H-5 of quinic acid moiety, seemingly triplet-doublet in low 
resolution NMR, 5 H-3 of quinic acid moiety, 6 H-4 of quinic acid moiety, 7 The same chemical shifts and coupling constants of two caffeoyl moieties, 8 H-1 and H-2 of tartaric acid moiety. 

unambiguously. Such rules are now implemented in freely available 
software for analysing mass spectrometry-based molecular profile 
data such as MZmine [212]. A search based on the molecular for-
mula together with plant chemotaxonomic information in a natural 
product database, such as the dictionary of natural products [213] 
that contains more than 200,000 NPs, might already be very effec-
tive for performing efficient biomarker peak annotation [210]. This 
process is especially efficient when the biomarkers have already 
been reported in the same plant species or in species of the same 
genus. 

To obtain additional structural information, molecular ion spe-
cies generated by soft ionisation methods can be fragmented in 
tandem mass spectrometers using MS/MS or MSn experiments. For 

this approach, triple-quadrupole (QqQ) MS/MS systems are the 
most commonly used mass spectrometers. Ion-trap (IT) mass spec-
trometers have the unique capability of producing multiple-stage 
MS/MS (MSn) data that may be essential for structural elucidation. 
For high-resolution measurements in MS/MS, either a hybrid in-
strument such as a Q-TOF-MS [37] or an IT-MS such as an Orbi-
trap Fourier transform (FT) MS instrument provides high quality 
spectra for metabolite identification [89]. If in-house built MS/MS 
libraries exist, which is often the case in industry, efficient de-
replication based on MS/MS spectra comparison can be performed. 
In the absence of standard or instrument-dedicated databases, which 
is often the case in non-industry research laboratories, the structural 
identification may rely on the interpretation of the fragmentation
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Table 4.  1H Chemical Shifts (ppm) and Coupling Constants (Hz) of Common Plant Flavonoids (A and C Rings). 

H
Flavonoids 

2 3 4 5 6 8 
solvent 

apigenin (24) - 6.68 (s) - - 6.29 (d, 2.0) 6.56 (d, 2.0) 1

apigenin-7-O-glucoside (25) - 6.74 (s) - - 6.57 (d, 2.0) 6.88 (d, 2.0) 1

luteolin (26) - 6.65 (s) - - 6.29 (d, 2.0) 6.56 (d, 2.0) 1

luteolin-7-O-glucoside (27) - 6.69 (s) - - 6.56 (d, 2.0) 6.86 (d, 2.0) 1

kaempferol (28) - - - - 6.28 (d, 2.0) 6.49 (d, 2.0) 1

rhamnetin (29)       1

quercetin (30) - - - - 6.27 (d, 1.5) 6.49 (d, 2.0) 1

quercitrin (31) - - - - 6.25 (d, 1.5) 6.41 (brs) 1

rutin (32) - - - - 6.28 (d, 2.0) 6.49 (d, 2.0) 1

myricetin (33) - - - - 6.26 (d, 2.0) 6.48 (d, 2.0) 1

vitexin (34) - 6.69 (s) - - 6.36 (brs)3 - 1

isovitexin (35) - 6.67 (s) - - - 6.61 (s) 1

daidzein (36) 8.21 (s) - - 8.08 (d, 9.0) 7.04 (dd, 9.0, 2.0) 6.97 (d, 2.0) 1

daidzin (37) 8.28 (s) - - 8.17 (d, 9.0) 7.28 (dd, 9.0, 2.0) 7.32 (d, 2.0) 1

genistein (38) 8.12 (s) - - - 6.31 (d, 2.0) 6.47 (d, 2.0) 1

genistin (39) 8.22 (s) - - - 6.60 (d, 2.0) 6.82 (d, 2.0) 1

naringenin (40) 5.39 (dd, 12.5, 
3.0) 

3.16 (dd, 17.5, 15.0) 
2.79 (dd, 17.5, 3.5) 

- - 5.94 (d, 2.5)4 5.94 (d, 2.5)4 1

naringin (41)

5.45 (dd, 10.0, 
3.0)3

5.43 (dd, 10.0, 
3.0)3

3.23 (dd, 17.5, 15.0)3

3.21 (dd, 17.5, 15.0)3

2.86 (dd, 17.5, 3.0)3

2.85 (dd, 17.5, 3.0)3

- - 6.18 (d, 2.0)4 6.20 (d, 2.0)4 1

hesperetin (42) 5.40 (dd, 12.0, 
3.5) 

3.16 (dd, 17.5, 12.0) 
2.83 (dd, 17.5, 3.5) 

- - 5.95 (d, 2.1)4 5.96 (d, 2.1)4 2

hesperidin (43)       1

neohesperidin (44)       1

(+)-catechin (45) 4.70 (d, 7.5) 4.13 (td, 7.5, 5.5) 

2.84 (dd, 16.5, 
5.5) 

2.54 (dd, 16.5, 
7.5) 

- 5.96 (d, 2.0) 6.05 (d, 2.0) 1

gallocatechin  (46) 4.65 (d, 7.0) 4.12 (td, 7.0, 5.5) 

2.81 (dd, 16.0, 
5.0) 

2.53 (dd, 16.0, 
7.5) 

- 5.96 (d, 2.0) 6.04 (d, 2.0) 1

gallocatechin-3- gallate (47) 5.07 (d, 6.5) 5.38 (dd, 6.0, 5.5) 

2.85 (dd, 16.5, 
5.0) 

2.74 (dd, 16.5, 
6.0) 

- 6.05 (d, 2.0) 6.07 (d, 2.0) 1

(-)-epicatechin (48) 5 4.26 (m) 

2.90 (dd, 17.0, 
4.5) 

2.73 (dd, 17.0, 
2.5) 

- 6.03 (d, 2.0) 6.06 (d, 2.0) 1

epicatechin-3- gallate (49) 5.13(brs) 5.52 (brs) 
3.05 (dd, 17.5, 

4.5) 
2.73 (brd, 17.5) 

- 6.07 (d, 2.0)3 6.09 (d, 2.0)3 1

epigallocatechin (50) 5 4.26 (brs) 

2.89 (dd, 17.0, 
4.5) 

2.73 (dd, 17.0, 
2.5) 

- 6.02 (d, 2.0)3 6.05 (d, 2.0)3 1

epigallocatechin-3- gallate (51) 5.06 (brs) 5.50 (brs) 
3.04 (dd, 17.5, 

4.5) 
2.88 (brd, 17.5) 

- 6.08 (d, 2.5)3 6.06 (d, 2.5)3 1

1CH3OH-d4-KH2PO4 buffer in D2O (pH 6.0), calibrated to TSP at � 0.00, 2 CH3OH-d4 calibrated to residual solvent at � 3.30, 3 Signals from different rotamers, 4 Two doublets of H-6 and H-8 detected as AB 
system, 5 Hidden under HDO solvent. 
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Table 5. 1H Chemical Shifts (ppm) and Coupling Constants (Hz) of Common Plant Flavonoids (B Ring). 

flavonoids 2' 3' 5' 6' others solvent 

apigenin (24) 7.93 (d, 9.0)3 7.02 (d, 9.0)3 7.02 (d, 9.0)3 7.93 (d, 9.0)3 - 1

apigenin-7-O-glucoside (25) 7.95 (d, 9.0)3 7.02 (d, 9.0)3 7.02 (d, 9.0)3 7.95 (d, 9.0)3 5.18 (d, 7.5)4 1

luteolin (26) 7.46 (d, 2.0) - 7.01 (d, 8.5) 7.48 (dd, 8.0, 2.0) - 1

luteolin-7-O-glucoside (27) 7.46 (d, 2.0) - 6.99 (d, 8.0) 7.49 (dd, 8.0, 2.0) 5.18 (d, 7.5)4 1

kaempferol (28) 8.08 (d, 8.5)3 7.00 (d, 8.5)3 7.00 (d, 8.5)3 8.08 (d, 8.5)3 - 1

rhamnetin (29)      1

quercetin (30) 7.72 (d, 2.0) - 6.99 (d, 8.5) 7.64 (dd, 8.5, 2.0) - 1

quercitrin (31) 7.34 (d, 2.0) - 7.00 (d, 8.5) 7.29 (dd, 8.5, 2.0) 
5.27 (d, 1.0)5

0.91 (d, 6.0)6
1

rutin (32) 7.67 (d, 2.1) - 6.98 (d, 8.5) 7.62 (dd, 8.5, 2.1) 
5.01 (d, 7.7)4

4.54 (d, 1.3)5
1

myricetin (33) 7.34 (s) - - 7.34 (s) - 1

vitexin (34) 
8.00 (d, 8.0)7

7.92 (brs) 7 7.03 (d, 8.5) 7.03 (d, 8.5) 
8.00 (d, 8.0)7

7.92 (brs) 7 5.02 (d, 10.0)4 1

isovitexin (35) 7.90 (d, 9.0)3 7.00 (d, 9.0)3 7.00 (d, 9.0)3 7.90 (d, 9.0)3 4.91 (d, 10.0)4, 8 1

daidzein (36) 7.39 (d, 9.0) 3 6.95 (d, 9.0) 3 6.95 (d, 9.0) 3 7.39 (d, 9.0) 3 - 1

daidzin (37) 7.41 (d, 8.5)3 6.96 (d, 8.5)3 6.96 (d, 8.5)3 7.41 (d, 8.5)3 5.23 (d, 7.5)4 1

genistein (38) 7.38 (d, 9.0) 3 6.95 (d, 9.0) 3 6.95 (d, 9.0) 3 7.38 (d, 9.0) 3 - 1

genistin (39) 7.40 (d, 8.5)3 6.96 (d, 8.5)3 6.96 (d, 8.5)3 7.40 (d, 8.5)3 5.17 (d, 7.0)4 1

naringenin (40) 7.36 (d, 8.5)3 6.91 (d, 8.5)3 6.91 (d, 8.5)3 7.36 (d, 8.5)3 - 1

naringin (41) 7.36 (d, 8.5)3 6.91 (d, 8.5)3 6.91 (d, 8.5)3 7.36 (d, 8.5)3

5.17 (d, 7.5)4,7 

5.15 (d, 7.5)4,7 

5.17 (d, 1.0)5,7 

5.16 (d, 1.0)5,7 

1.27 (d, 6.0)6

1

hesperetin (42) 7.00 (brs) - 7.04 (d, 8.5) 6.99 (dd, 8.0, 1.5) 3.88 (s, OCH3) 2

hesperidin (43)      1

neohesperidin (44)      1

(+)-catechin (45) 6.90 (d, 2.0) - 6.88 (d, 8.5) 6.80 (dd, 8.5, 2.0) - 1

gallocatechin (46) 6.48 (s) - - 6.48 (s) - 1

gallocatechin-3- gallate (47) 6.38 (s) - - 6.38 (s) 6.96 (s)9 2

(-)-epicatechin (48) 7.02 (brs) - 6.88 (brs)10 6.88 (brs)10 - 1

epicatechin-3- gallate (49) 7.01 (d, 2.0) - 6.81 (d, 8.0) 6.90 (dd, 8.0, 2.0) 6.98 (s)9 1

epigallocatechin (50) 6.59 (s) - - 6.59 (s) - 1

epigallocatechin-3- gallate (51) 6.60 (s) - - 6.60 (s) 6.98 (s)9 1

1CH3OH-d4-KH2PO4 buffer in D2O (pH 6.0), calibrated to TSP at � 0.00, 2CH3OH-d4 calibrated to residual solvent at � 3.30, 3multiplet but seemingly doublet, 4H-1 of �-glucose, 5H-1 of �-rhamnose, 6CH3 of 
rhamnose, 7Signals from different rotamers, 8Hidden under HDO solvent, 9H-2 and H-6 of gallic acid moiety, 10Two doublets of H-5’ and H-6’ detected as AB system. 

based on the existence of structure hypothesis or on the application 
of automated workflows [214]. MS peak annotation, however, 
sometimes remains putative. A scheme summarising the main steps 
that are used to annotate MS peaks is provided in (Fig. 12).

Contrary to LC-MS, in GC-MS the electron ionisation MS 
spectra (EI-MS) that can be recorded are very reproducible between 
instruments (see above). This has the important advantage that large 
EI-MS databases can be directly searched for peak annotation. De-
spite the high resolution of GC separation, the co-elution of me-
tabolites may occur and the deconvolution of these spectra is an 
important step. The latest advance in this area involves GC coupled 
to a TOF-MS instrument to take advantage of the high data acquisi-
tion rate and spectral continuity of TOF mass spectrometers to build 
libraries that take into account spectra/retention time-indexed data 
sets [130]. 

Despite these advances, very little progress has been reported 
for the identification of unknown peaks in GC-MS [215] because 

the method does not easily allow the isolation of the biomarker of 
interest for de novo characterisation. 
5.3. De Novo Identification Based on Targeted Micro-Isolation 

When unknown biomarkers need to be identified de novo, their 
complete characterisation requires NMR. In this respect, NMR 
signals associated with certain biomarkers might be highlighted in 
NMR-based metabolomic approaches using covariance methods 
such as Statistical Heterospectroscopy (SHY) if the same samples 
are analysed by NMR and MS [216]. SHY allows signals in one 
spectroscopic domain (NMR) to be dispersed in a second analytical 
spectroscopic domain (MS) to facilitate data co-analysis. Therefore, 
it is possible to generate meaningful NMR-to-m/z correlations to 
facilitate structure assignment. In addition, it could be helpful to 
derive connectivities between NMR signals and fragmentation pat-
terns from the same molecules.  

However, this approach is still rather complex and requires that 
the biomarker is present in a sufficient amount to be detected by 



Plant Metabolomics: From Holistic Data to Relevant Biomarkers Current Medicinal Chemistry, 2013, Vol. 20, No. 8     1079

NMR in the crude mixture. Other alternatives include the synthesis 
of the putative compound and comparison with the peak detected in 
the sample or the targeted micro-isolation of the biomarkers of 
interest based on MS data. In the latter case, one advantage of LC-
MS based metabolomics approaches is that because biomarkers of 
interest can be efficiently localised in the LC chromatogram, and 
provided that an adequate quantity of the sample is available, they 
can be isolated using a targeted procedure and subsequently identi-
fied by sensitive micro NMR methods [110].  

Fig. (10). 1H-1H J-resolved spectra (A) shows signals of phenylpropanoids 
and flavonoids. 1, H-8': cis-feruloyl moiety; 2, H-8: quercetin-3-O-
glucoside; 3, H-8': ; 4, H-8': trans-feruloyl moiety; 5, H-6: quercetin-3-O-
glucoside; 6, H-5': caffeoyl moiety; 7, H-3: trans-feruloyl moiety; 8, H-5': 
quercetin-3-O-glucoside; 9, H-6': caffeoyl moiety; 10, H-6': cis-feruloyl 
moiety; 11, H-6': quercetin-3-O-glucoside; 12, H-7: caffeoyl moiety; 13, H-
2': quercetin-3-O-glucoside. 1H-1H COSY spectra (B) shows correlations 
among the signals of H-6 with H-8 (1) and H-5' with H-6' (3) of quercetin-3-
O-glucoside; H-5 with H-6 (2) of trans- and cis-caffeoyl and feruloyl moi-
ety; H-8' with H-7' (4, 5) of trans- and cis-caffeoyl and feruloyl moiety, 
respectively. (Adapted from Ali et al., 2012) 

Due to the complexity of plant extracts, the purification of low 
concentration metabolites is critical. A rapid and rational strategy 
can be used that relies on optimisation of the chromatographic 
analysis using UHPLC-TOF-MS with modelling software. The 
optimised method can be transferred to semi-preparative LC condi-
tions with MS detection. Complete characterisation of the isolated 
metabolites, often obtained in the low-microgram range from a few 
milligrams of plant extract, is then performed using micro-flow-
NMR methods, such as CapNMR, that provide excellent sensitivity 
[217]. With such NMR probes, the biomarkers need only to be dis-
solved in a minimal amount of deuterated solvent (5 �L). With such 
a small volume, high concentrations can be obtained with an opti-

mum filling factor, and high-quality 1D- and 2D-NMR spectra can 
be measured [218]. Such an approach has permitted the full charac-
terisation of new phytohormones induced by wounding in the leaf 
of Arabidopsis thaliana. In this case, even minor key biomarkers 
were fully characterised by CapNMR after a two-step targeted LC-
MS micro-isolation procedure [110]. This approach has also been 
used for the identification of various biomarkers that are induced 
upon herbivory attack in maize [80]. 

5.4. Databases for Biomarker Identification  

The access to databases can considerably increase the speed of 
the biomarker identification process. Although great efforts have 
been made to create databases for researchers, these repositories 
remain incomplete in plant science, particularly in terms of secon-
dary metabolites. Moreover, a large fraction of the metabolites in-
cluded in complex plant extracts is still unknown. Two main cate-
gories of databases can be defined: spectroscopic databases dedi-
cated to metabolites (MS-or NMR-based) and those that are path-
way-oriented [37]. 
5.4.1. Spectroscopic Databases 

Several types of NMR databases are available. The Madison 
Metabolomics Consortium Database (MMCD, http://mmcd. 
nmrfam.wisc.edu/) [219, 220] is a reference spectral database that 
contains chemical structures, NMR and LC-MS spectra of reference 
compounds, their physical properties and links to chemical and 
metabolomic databases. Databases for more specific metabolite 
profiles include the Biological Magnetic Resonance Data Bank 
(BMRD,www.bmrb.wisc.edu), the Human Metabolome Database 
(HMDB,www.hmdb.ca) [221], the NMR database of Linkoeping 
(MDL, http://www.liu.se/hu/mdl/main/), the Magnetic Resonance 
Metabolomics Database (http://www.metabolomics.bioc.cam.ac.uk/ 
metabolomics), Prime [222] and the NMR Lab of Biomolecules 
(http://spinportal.magnet.fsu.edu). Other databases that might be 
useful for metabolite identification using NMR spectra include the 
NMRShiftDB (www.ebi.ac.uk/NMRshiftdb/), the Spectral Data-
base for Organic Compounds (SDBS, www.riodb01.ibase.aist. 
go.jp) and the BioMagResBank (www.bmrb.wisc.edu). Recently, 
several studies dedicated to the establishment of databases have 
been published, including MeRy-B [223] and MetaboMiner [224, 
225]. MetaboMiner automates the identification of metabolites 
from 1H NMR data of biological origin. 

Different types of MS databases exist. Those that are easy 
searchable are the GC-MS databases that are based on EI-MS spec-
tra of standards. The database search is based on a computed score 
(similarity or distance function) that compares the queried spectrum 
and reference database entries to extracted putative hits. In this 
respect, large GC-MS databases exist for plant metabolomics such 
as the Golm Metabolomic Database (GMD) [226] and the FiehnLib 
[130]. Such databases contain primary metabolites below ca 500 Da 
and include lipids, amino acids, fatty acids, amines, alcohols, sug-
ars, amino-sugars, sugar alcohols, sugar acids, organic phosphates, 
hydroxyl acids, aromatics, purines, and sterols as methoximated and 
trimethylsilylated mass spectra under EI ionisation. One advantage 
of GC-MS is that compound identification based on both mass 
spectral patterns can also integrate the retention index. Retention 
indices can be measured based on aliphatic carbon numbers [227] 
or alternatively, calculated from molecular properties [228]. Other 
generic databases exist such as NIST [229], METLIN [230] and 
MassBank [231]. They can be searched for EI-MS or CID MS/MS 
spectra. However, in this case, MS/MS spectra cannot be searched 
with the same level of confidence as EI-MS data. Significant vari-
ability exists between instruments with regard to ionisation and CID 
fragmentation due to the difficulty of applying standardised instru-
mental conditions. In this case, to ensure true positive matches, 
similar analytical platforms must be employed, and this constitutes 
a significant drawback of DIMS-based LC-MS approaches. 
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Fig. (11). Generic flow chart summarising the main steps of NMR identification. 

Fig. (12). Generic flow chart summarising the main steps of MS identification.  

5.4.2. Pathway-Oriented Databases 
Other databases provide information about annotated metabolic 

pathways (e.g., KEGG [232], MetaCyc [233] and Reactome [234]). 
They constitute key tools to extract biological information from 
metabolomic data by linking observed signals to existing knowl-

edge [189]. They also provide information on enzymatic reactions 
with respect to the proteins or genes that are related to a given 
metabolic pathway. Among these, plant-specific databases includ-
ing PlantCyc [235] and KNApSAcK [236] have been developed 
[37].  

Identification of Basic 
Metabolites

Normalization and 
Scaling

1H-1H-J-resolved

1H-1H-COSY or 
TOCSY

HSQC

HSQC-TOCSY or 
HMBC

Unsupervised PCA, FA, HCA

Supervised PLS(DA), OSC, OPLD 
(DA), CA, ICA, SIMCA

Multivariate Data Analysis

SPE or 
Sephadex LH-20

Purification or 
Concentration

of Target Metabolites

1H-NMR Analysis

Data Bucketing

2D NMR Elucidation of 
Selected Signals

LR-MS

PI &NI MS API spectra

Determination of M 
from molecular ion species

Cross search of nominal mass
with chemotaxomic information 

or specific DB

Additional  LR or HR MS/MS or MSn

Peak annotation based 
on literature data

HR-MS

Molecular formula assignment

Mass accuracy and 
isotopic pattern matching

Heuristic filtering

M
any hits Fe

w
 h

its

GC-EI-MS spectra

Peak annotation based 
on search in EI-MS DB

Cross search of molecular 
formula with chemotaxonomic 

information or specific DB

Peak annotation based on matching on 
MS/MS MSn DB or interpretation

LR-MS HR-MS



Plant Metabolomics: From Holistic Data to Relevant Biomarkers Current Medicinal Chemistry, 2013, Vol. 20, No. 8     1081

6. PLANT METABOLOMIC APPLICATIONS 

During the last decade, metabolomics has been applied in sev-
eral areas of research that are related to plant biology and chemis-
try. Its role differs according to the application, which ranges from 
the comprehensive and extensive profiling of a given plant me-
tabolome [237] as an extension of what could be determined fol-
lowing a more traditional phytochemical investigation, to lead find-
ing via the identification of biomarkers that can be statistically cor-
related to change in bioactivity and finally to the understanding of 
complex plant mechanisms as part of a systems biology approach. 
In particular, metabolomics was found to be helpful in solving is-
sues related to (i) fingerprinting of species, genotypes or ecotypes 
for taxonomic, or biochemical (gene discovery) purposes [238-
241]; (ii) comparing and contrasting the metabolite content of mu-
tant or transgenic plants with that of their wild-type counterparts 
[23]; (iii) monitoring the behaviour of specific classes of metabo-
lites in relation to applied exogenous chemical and/or physical 
stimuli [16, 242]; (iv) interaction of plants with the environment 
[243] or herbivores/pathogens [17, 80, 244]; (v) studying develop-
mental processes, such as the establishment of symbiotic associa-
tions, fruit ripening, or germination [245]; (vi) quality control of 
medicinal herbs and phytopharmaceuticals [246, 247]; and (vii) and 
determining the activity of medicinal plants [248] and health-
affecting compounds in food [79, 249, 250]. 

Many applications have been summarised in different useful 
field-specific reviews [6, 8, 17, 22, 23, 37, 40, 90, 143, 251, 252]. 
In this section, only a few selected applications in diverse fields 
have been summarised to provide a view of the various approaches 
that are used. These applications are listed in (Table 6) and de-
scribed in the following sections. 

6.1. Chemotaxonomy and Classification of Plants  

Several studies have demonstrated that metabolomics can be 
applied successfully to the classification of plants. For example, 1H
NMR metabolite fingerprinting in combination with PCA was ap-
plied to distinguish five different Verbascum species. Based on the 
metabolites, five species could be discriminated. Among these spe-
cies, V. xanthophoeniceum and V. nigrum accumulated higher 
amounts of the pharmaceutically important harpagoside and verbas-
coside, forsythoside B and leucosceptoside B [253]. NMR-based 
metabolomics was applied to differentiate 11 Ilex species, of which 
only I. paraguariensis was used for the Yerba mate and the others 
were all adulterants. Metabolite analysis clearly showed that only I. 
paraquariensis contained xanthine alkaloids (caffeine, theobromine 
and theophylline) but it did not contain arbutin, which many of 
other species produced in large amounts. Hierarchical analysis of 
NMR data was well correlated to the phylogenetic data [208], 
which indicates that metabolome data can be efficiently used to 
establish a link between chemotaxonomy and phylogeny. However, 
great care should be taken in such analyses to avoid the influence of 
environments where plants have been grown. MS-based me-
tabolomic studies were also found to be very useful for such appli-
cations. For example, an unbiased LC-MS-based metabolomic 
method utilising advanced data processing was applied to Lonicera
species flower buds and provided efficient classification. Several 
biomarkers were identified with further MS-MS analysis. Iridoid 
glycosides in L. japonica were remarkably more abundant than 
those in other species, while saponins in L. japonica were limited, 
compared to the other 6 species [254]. 

6.2. Quality Control of Plant-Derived Medicines 

The current quality control of medicinal plants or plant-derived 
medicines has some limitations because the analyses only target the 
main active ingredients. Metabolomics can provide a holistic view 
of metabolites in the extracts, which is necessary to ensure the 
pharmacological efficiency of phytopharmaceuticals and to reduce 

the toxicity caused by unknown ingredients. NMR-based me-
tabolomics has been successfully applied for this purpose to Canna-
bis, Strychnos, Ephedra, Hypericum and Ginseng [274-278], and 
more recently to Scutellaria and Polygonum [259, 260]. Signifi-
cantly, most of these studies have highlighted that not only the main 
active component was found but also other metabolites that were 
important to determine the quality of the medicinal plant or plant-
derived medicines.  

Recently UHPLC-qTOF-MS was found to be very efficient for 
the quality control of St. John’s Wort (Hypericum perforatum)
preparations [258]. A selection of batches from 9 commercially 
available H. perforatum products available on the German and 
Egyptian markets showed variable quality, particularly in hyper-
forin and fatty acid content. Multivariate data analysis showed dis-
crimination between various preparations according to their global 
composition, including differentiation between various batches 
from the same supplier.

6.3. Lead Finding  

A conventional method of finding leads of natural product ori-
gin is to integrate the bioactivity-guided fractionation of plant ex-
tracts until a pure active compound is obtained [279]. However, this 
approach is tedious and does not always lead to the identification of 
single bioactive compounds that may explain the clinical efficacy of 
a given botanical that is used as a drug. Furthermore, the various 
chromatography steps involved in bioactivity-guided fraction may 
degrade the bioactive compounds and bioactivity is sometimes not 
recovered after fractionation. These considerations have motivated 
the search for new alternative methods in lead finding [280]. Re-
cently, metabolomics has been applied to lead finding, and it has 
been demonstrated to be a very promising tool. In particular, NMR-
based approaches combined with chemometrics have provided 
valuable information about the active ingredients of plant extracts. 
Particularly, supervised multivariate data analysis methods, such as 
PLS or O2PLS, were found to be particularly useful for the identifi-
cation of biomarkers in such studies. For example, 24 different 
extracts of four different accessions of St. John’s Wort (Hypericum 
perforatum) extracted by six distinct solvents were evaluated [277]. 
Partial least squares analysis was used as a regression model and 
proved to be effective in identifying the resonances in the 1H NMR 
spectrum that were correlated with the activity. The same NMR-
based approach was used to predict the anti-plasmodial activity in 
different Artemisia annua extracts and allowed their classification 
based on this activity [263]. A similar approach was taken using the 
Mexican anxiolytic and sedative plant, Galphimia glauca. PLS-DA 
modelling discriminated active and non-active samples collected in 
different areas of Mexico and showed that the signals related to 
activity were associated with specific metabolites, the galphimines 
[264]. A comprehensive extraction of Orthosiphon stamineus com-
bined NMR-based metabolomics with adenosine A1 receptor bind-
ing activity. Two flavonoids, among a large number of NPs, were 
clearly verified to be responsible for the activity without any further 
purification steps [265]. 

6.4. Plant physiology and Interaction with other Organisms 

Plants respond upon stimuli and stress in various manners. A 
comprehensive analysis of metabolome modifications resulting 
from these effects has opened new avenues to study these complex 
plant chemical responses. Many very valuable studies of these as-
pects have been conducted, mainly using crop plants, and the re-
sults are summarised in different reviews [16, 17, 37]. In the field 
of abiotic stresses, hyphenated MS-based metabolomics has been 
applied to the study of the response of plants to dehydration [281], 
salt treatment [282], temperature changes [283] and light stress 
[284]. 

One recent example is the NMR metabolomics study of two 
cultivars of grapevines, ‘Regent’ (resistant) and ‘Trincadeira’



1082    Current Medicinal Chemistry, 2013, Vol. 20, No. 8 Wolfender et al. 

Table 6. Selected Representative Plant Metabolomic Applications. 

Method(s) Instrumentation Species/organ(s) Factor(s) Application References 

Chemotaxonomy /classification 
1H-NMR NMR-500 MHz Verbascum Five different species Metabolite profiling [253] 

1H-NMR NMR-500 MHz Ilex 
Eleven different spe-

cies/adulterant Metabolite profiling [208] 

LC-MS RRLC/qTOF-MS Lonicera 
Seven Lonicera species (flower 

buds) Metabolite profiling [254] 

GC-MS, LC-MS, 1H-
NMR 

LC–ESI-MS, EI-MS 
NMR-600 MHz Glycyrrhiza 

Classification based on genetic 
and or geographical origin Metabolite profiling [255] 

GC-MS EI-Q-MS Curcuma Three Curcuma species Metabolite profiling [256] 

Quality control / Plant-derived medicine 

GC-MS PY-GC-MS Angelica acutiloba 
cultivation area to quality evalua-

tion Metabolite fingerprinting [257] 

LC-MS UPLC�qTOF�MS Hypericum perforatum Commercial preparations Metabolite profiling [258] 
1H-NMR NMR-500 MHz Polygonum Commercial preparations Metabolite fingerprinting [259] 
1H-NMR NMR-500 MHz Scutellaria baicalensis Plant from different origin Metabolite profiling [260] 

HPLC-PDA-MS-
SPE-NMR NMR-600 MHz Ginkgo biloba Commercial preparations Metabolite profiling [261] 

Lead finding 

1H-NMR NMR-500 MHz Echinacea 
Inhibitory Effects on Cyto-

chrome P450 3A4 Metabolite profiling & PLS [262] 

1H-NMR NMR-500 MHz Artemisia Anti-plasmoidal activity Metabolite profiling & PCA [263] 

1H-NMR NMR-500 MHz Galphimia Sedative activity 
Metabolite profiling & PLS-

DA [264] 

1H-NMR NMR-500 MHz Orthosiphon 
adenosine A1 receptor binding 

activity Metabolite profiling & PLS [265] 

Plant physiology/Interaction with other organisms 

GC-MS; LC-MS EI-TOF-MS; ESI-TOF-MS Rice/leaves Bacterial leaf blight disease Metabolite profiling [266] 
1H-NMR NMR-600 MHz Maize/roots and shoots Salt stress Metabolite fingerprinting [267] 

1H-NMR and HR-
MAS NMR-500 and 600 MHz Rice/seeds Biotic and abiotic stress Metabolite fingerprinting [268] 

1H-NMR NMR-400 MHz Wheat/leaves and stem Fusarium head blight disease Metabolite fingerprinting [269] 

1D- and 2D-NMR NMR-500 MHz Pea/leaves Drought stress Metabolite fingerprinting [270] 

GC-MS EI-Q-MS Barley/roots and leaves Salt stress Metabolite profiling [271] 

ICP-AES; GC-MS EI-TOF-MS Lotus/shoots Salt stress 
Elements, transcript and 

metabolite profiling [272] 

GC-MS; 1D- and 
2D-NMR NMR-400 MHz; EI-Q-MS Rice/roots Chromium stress 

Transcript and metabolite 
profiling [273] 

Abbreviations: EI, electronic ionization; ESI, electrospray ionization; GC, gas chromatography; LC, high performance liquid chromatography; MS, mass spectrometry; HR-MAS, high-resolution magic angle 
spinning NMR; ICP-AES, inductively coupled plasma-optical emission spectrometry; NMR, nuclear magnetic resonance; PDA, photodiode array; PLS, partial least squares regression analysis;  Q, quadrupole; 
TOF, time of flight. 

(susceptible), in relation to downy mildew pathogen (Plasmopara 
viticola) infection. Metabolites responsible for the discrimination 
were identified as a fertaric acid, caftaric acid, quercetin-3-O-
glucoside, linolenic acid, and alanine in the resistant cultivar ‘Re-
gent’, while the susceptible ‘Trincadeira’ showed higher levels of 
glutamate, succinate, ascorbate and glucose [39]. Another study 
related to the salt stress response of maize shoots and roots showed 
a clear separation of the growth and saline effects that was high-
lighted by supervised data mining methods of NMR data. Twenty-
eight compounds were characterised based on proton chemical 
shifts. Among them, increased levels of alanine, glutamate, aspar-
agine and glycine-betaine were detected upon salt stress [267].  

Similar NMR approaches have been applied to Arabidopsis, 
Brassica, Senecio and Chrysanthemums to study the metabolite 
response of corresponding plants after infection or interaction with 
other organisms [36, 202, 209]. 

Very recently, an MS-based metabolomic study has revealed 
herbivore-induced metabolites of resistance and susceptibility in 
maize leaves and roots. Local and systemic herbivore-induced 
changes in maize leaves, sap, roots and root exudates were evalu-
ated in Spodoptera littoralis-infested maize without any prior as-
sumptions about their function. Thirty-two differentially regulated 
compounds from seedlings were highlighted by LC-MS and the 
structures of the biomarkers were further confirmed by microflow 
NMR analysis [80]. This last example revealed an interesting com-
plementarity of MS and NMR in plant metabolomics studies. 

CONCLUSIONS AND NEW TRENDS  

Since the relatively recent first publications on plant me-
tabolomics at the beginning of this millennium, this new field of 
science has progressed from an ambitious concept to a rapidly 
growing and valuable scientific strategy that provides a more global 
picture of the molecular organisation of various organisms [23]. 
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Metabolomics has rapidly evolved during the last decade thanks to 
the impressive synergistic development of analytical technologies 
and powerful bioinformatics tools. In the case of MS, the wide-
spread access to sensitive high-resolution bench-top instruments 
and the introduction of fast and efficient chromatographic methods 
represent important breakthroughs. Robust methods based on these 
technologies are now routinely used in numerous laboratories. In 
parallel, the development of ultrahigh-resolution instruments or 
imaging mass spectrometry methods has also opened new avenues. 
For NMR, impressive improvements in sensitivity with the intro-
duction of micro coil and cryogenised probes have pushed the lim-
its further. The advent of probes built with high temperature super-
conducting (HTS) material or the implementation of efficient po-
larisation transfer methods might also become very interesting 
means of attaining high sensitivity. The increase in NMR magnetic 
field strengths will certainly contribute to the constant improvement 
in spectral resolution. 

Metabolomics can therefore be considered as a mature field that 
represents an important complement to the other “omics” technolo-
gies that are used in systems biology. As shown by many valuable 
applications, metabolomics has yielded significant new biological 
knowledge. This way of addressing new biological issues in many 
different fields of plant science by data-driven approaches has sev-
eral advantages compared to the classical hypothesis-driven ap-
proach. Notwithstanding these impressive analytical and methodo-
logical developments, the size of a plant metabolome can still be 
only very roughly estimated and the comprehensive identification 
and quantitation of all metabolites in a given organism is far from 
being achieved. The current bottleneck of metabolomics continues 
to be the unambiguous identification of the numerous detected fea-
tures that may contain key information about a biological system.  

Clearly, more effort needs to be made in this area. To solve 
these problems, many attempts have been made, and many investi-
gations are still underway. To raise plant metabolomics to the same 
level of identification as explored for the analysis of body fluids 
with the so-called “metabonomics” approach [285], it will be essen-
tial to create public databases and establish standardised protocols 
that normalise and facilitate the information exchange from differ-
ent laboratories. While several rather generic protocols exist, 
unique methods and ways to store the data are still far from being 
established for the whole community. This is also likely related to 
the large diversity of natural products in the plant kingdom and the 
species-specific occurrence of secondary metabolites. Numerous 
research groups possessing similar metabolomic platforms have 
started to use standard protocols to allow the comparison and shar-
ing of metabolomics information. Therefore, the development and 
coordination of databases will likely constitute a cornerstone to 
extracting original biological information from experimental data. 
Until now, a compromise between high quality chemotaxonomic 
information, MS/MS and NMR spectra and sophisticated algo-
rithms (e.g., spectroscopic simulation MSn spectral tree calcula-
tions, etc.) have helped natural product chemists to accelerate the 
pace at which biomarkers are identified.  

The multivariate nature of data obtained from metabolomic ex-
periments requires specific approaches to extract relevant informa-
tion. As an increase in data accumulation is inevitable, automati-
cally finding the valuable but hidden information in metabolomic 
data of high dimensionality is another crucial issue. Data mining, 
therefore, has a central role to play by interpreting the data and 
inferring the structures governing biological phenomena [152]. The 
combination of multiple data sources will undoubtedly provide a 
more comprehensive vision by extracting common traits from dif-
ferent datasets obtained from the same plant sample(s). However, 
data mining should not be considered a black box, and a thorough 
understanding of the raw data is required to prevent multi-
dimensional data that have undergone data reduction from being 
inaccurately interpreted. 

To study whole biological systems, knowledge generated by 
metabolomics has to be integrated with those from other ‘omics’ 
approaches such as genomics, transcriptomics and proteomics (in-
ter-omic fusion). Even within metabolomics, the combination of 
data from complementary analytical platforms would be useful to 
study whole system (intra-omic fusion). This fusion of data from 
different omics level is challenging and requires the development of 
tools in order to display and interpret the vast amounts of data in an 
efficient manner and several attempts have been made in this direc-
tion (for a review see [286]). Despite some difficulties research 
effort in this direction are evolving very rapidly and will be key for 
further development of systems biology and functional genomics.   

At present, most of the metabolomics studies that have been 
conducted in plant science have mainly focused on the characterisa-
tion of metabolome changes in entire plant organs that occur at a 
given time. This can provide interesting information regarding the 
metabolic status of an organism, but this only represents a static 
picture of the observed phenomena. A deeper understanding of 
subtle metabolome changes that may ultimately explain the func-
tioning of the biological system would likely require a higher level 
of compartmentalisation (study of vacuoles, mitochondria, plastids 
and nuclei, or even single cells) that also takes metabolite fluxes 
into account. Therefore, spatiotemporal metabolomics studies per-
formed on adequate timescales and, when possible, at the cellular 
level represent new challenges to be overcome in this constantly 
evolving and fascinating field of research. 
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LIST OF ABBREVIATIONS 

ANN = Artificial Neural Network  
APCI = Atmospheric Pressure Chemical Ionisation  
API = Atmospheric Pressure Ionisation  
APPI = Atmospheric Pressure Photoionisation  
CE-MS = Capillary Electrophoresis-MS  
COSY = COrrelation SpectroscopY  
COW = Correlation Optimised Warping  
DART = Direct Analysis In Real Time  
DESI = Desorption Electrospray Ionisation  
DIMS = Direct Injection MS  
DTW = Dynamic Time Warping  
EESI = Extractive Electrospray Ionisation  
EI = Electron Ionisation  
ESI = Electrospray Ionisation 
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FT-ICR-MS = Fourier Transform - Ion Cylotron - Resonance Ms 
GC  = Gas Chromatography 
GC-MS = Gas Chromatography - Ms 
HCA = Hierarchical Cluster Analysis 
HILIC = Hydrophilic Interaction Liquid Chromatography
HMBC = Heteronuclear Multiple Bond Correlation 
HMQC = Heteronuclear Multiple Quantum Coherence  
HPLC = High Performance Liquid Chromatography  
HR = High-Resolution 
HSQC = Heteronuclear Single Quantum Coherence Spec-

troscopy 
HTS = High Temperature Superconducting 
IT = Ion Trap 
LC = Liquid Chromatography 
LC-MS = Liquid Chromatography - MS 
LC-NMR = Liquid Chromatography - NMR 
LIT = Linear Ion Trap 
LLE = Liquid-Liquid Extraction 
LR = Low Resolution 
MALDI = Matrix-Assisted Laser Desorption Ionisation  
MS = Mass Spectrometry 
MS/MS = Tandem Mass Spectrometry 
MSI = MS Imaging  
MSn = Multiple Stage Mass Spectrometry 
MVDA = Multivariate Data Analysis  
NI = Negative Ionisation 
NMR = Nuclear Magnetic Resonance 
NP = Normal Phase 
NPs = Natural Products 
O-PLS = Orthogonal PLS  
PCA = Principal Component Analysis  
PI = Positive Ionisation; 
PLS = Partial Least Squares  
PLS-DA = PLS Discriminant Analysis  
Q = Quadrupole 
QC = Quality Control 
QIT = Quadrupole Ion Trap 
QqQ = Triple Quadrupole 
RP = Reverse Phase 
SD = Standard Deviation 
SHY = Statistical Heterospectroscopy  
SPE = Solid-Phase Extraction  
SVM = Support Vector Machine 
TMS = Total Mass Spectra 
TOCSY = TOtal Correlation SpectroscopY  
TOF = Time-Of-Flight 
UHPLC = Ultra-High Pressure Liquid Chromatography 
UV-scaling = Unit Variance - Scaling 
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